Problem set 1 solutions

Problem 1:
At upstream end $u(x \rightarrow-\infty)=u$
By mass conservation, the mass flat through pine must be constant.

$$
\text { Mass Flux }=\rho u(x) w(x) D
$$

where D is depth of pipe.

At upstream end, have $w(x)=\frac{3 w_{0}}{2}$

$$
\begin{aligned}
\Rightarrow \quad \rho u(x) w(x) D & =\rho u \frac{3 w_{0}}{2} D \\
u(x) & =\frac{3 u}{2}\left(\frac{1}{1-\frac{1}{2} \tanh (x)}\right)
\end{aligned}
$$

(a) for $x \rightarrow \infty$

$$
u(x \rightarrow \infty)=\frac{3 u}{2}\left(\frac{1}{1-\frac{1}{2}}\right)=3 u .
$$

(b) Rete of derange of velocity at $x=0$

$$
\frac{D u}{D t}=\frac{\partial u}{\partial t}+\frac{u \partial u}{\partial x}
$$

(flow is steady)

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial}{\partial x}\left\{\frac{3 u}{2} \frac{1}{1-\frac{1}{2} \tanh (x)}\right\} \\
& =\frac{3 u}{2} \frac{\partial}{\partial v}\left(\frac{1}{1-v / 2}\right) \frac{\partial}{\partial x}(\tanh (x)) \\
& =\frac{3 u}{2}\left(\frac{-1}{2}\right)\left(\frac{-1}{(1-v / 2)^{2}}\right)\left(1-\tanh ^{2}(x)\right) \quad \text { [Google] }
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{3 u}{4} \frac{1}{\left(1-\frac{1}{2} \tanh (x)\right)^{2}}\left(1-\tanh ^{2}(x)\right) \\
\text { at } x=0 & \tanh (x)=0 \\
\frac{\partial u}{\partial x} & =\frac{3 u}{4} \\
u(x=0) & =\frac{3 u}{2} \\
\frac{D u}{D t} & =\frac{u \partial u}{\partial x}=\frac{9 u^{2}}{8}=\frac{9}{8} \mathrm{~ms}^{-2}
\end{aligned}
$$

(c) Euberian vs. Lagrangian viewpoint:

Eutherian view \Rightarrow no choose with time $\frac{\partial u}{J t}=0$
$\begin{array}{ll}\text { Lagrangian view }\end{array} \Rightarrow \begin{aligned} & \text { air parcels accelerate } \\ & \text { as the pass through }\end{aligned} \quad \frac{D u}{D t}>0$ the pine
(d) For frictionless Mow

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\frac{u}{} \frac{\partial u}{\partial x} & =\frac{-1}{\rho} \frac{\partial p}{\partial x} \\
\text { at } x=0 \quad \frac{D u}{D t} & =\frac{9 u^{2}}{8} \\
\frac{9 u^{2}}{8} & =\frac{-1}{\rho} \frac{\partial p}{\partial x} \\
\frac{\partial p}{\partial x} & =\frac{-9 u^{2} \rho}{8} \rho=\frac{-9}{8}(1000) \quad \mathrm{Pam}
\end{aligned}
$$

Problem 2.

$$
\begin{aligned}
\frac{D u}{D t} & =\frac{D}{D t}\{u \underline{\hat{\lambda}}+v \hat{\underline{\phi}}+w \hat{\hat{r}}\} \\
& =\frac{D u}{D t} \hat{\hat{t}}+u \frac{D \hat{\lambda}}{D t}+\cdots \quad \text { (product rule) } \\
W_{\text {ar }} \frac{D \hat{\lambda}}{D t} & =\frac{\partial \hat{\lambda}}{\frac{1}{\partial t}}+\frac{D \lambda}{D t} \frac{\partial \hat{\lambda}}{\partial \lambda}+\frac{D \psi}{D t} \frac{\partial \hat{\lambda}}{\partial \psi}+\frac{D r}{D t} \frac{\partial \hat{\lambda}}{\partial r} \\
& =\frac{u}{r \cos \psi} \frac{\partial \hat{\lambda}}{\partial \lambda}+\frac{u}{r} \frac{\partial \hat{\lambda}}{\partial \psi}+w \frac{\partial \hat{\jmath}}{\partial r}
\end{aligned}
$$

Seek expression for $\frac{\partial \hat{\lambda}}{\partial \lambda}$
How do we describe the unit vectors $\hat{\lambda}, \stackrel{\hat{\varphi}}{\hat{\sim}}, \hat{\sim}$
λ is a unit vector in the direction in which λ is mucreasing.
Define $\underset{\sim}{ }$ as the position vector. May express as

$$
\underset{\sim}{r}=r(\lambda, \phi, r)
$$

Consider $\quad \delta \underset{\sim}{r}=\underset{\sim}{r}(\lambda+\delta \lambda, \varphi, r)-\underset{r}{ }(\lambda, \phi, r)$

In the limit of $\delta \lambda \rightarrow 0$, we have
$\delta_{\sim}^{r}=\frac{\partial r}{\partial \lambda} \delta \lambda$ is a vector in the direchin of increasing d.

Hence $\quad \stackrel{\hat{\lambda}}{\underset{\sim}{x}}=\frac{\delta r}{1 \delta r}=\frac{\partial r}{\partial \lambda}$ (Divide by $\left|\frac{\partial r}{\partial \hat{\lambda}}\right|$ to mane length $=1$)

To be useful, need to express $\hat{\lambda}$ in a ser of cartesian. coordinates.

Remember

$$
\begin{aligned}
& x=r \cos \lambda \cos \varphi \\
& y=r \sin \lambda \cos \phi \\
& z=r \sin \varphi
\end{aligned}
$$

In cartesian coors:

$$
\begin{align*}
\underline{r} & =x \hat{\underline{x}}+y \hat{y}+z \hat{z} \\
\frac{\partial r}{\partial \lambda} & =\frac{\partial x}{\partial \lambda} \underline{\underline{x}}+\frac{\partial y}{\partial \lambda} \hat{y}+\frac{\partial z}{\partial \lambda} \hat{\underline{z}} \\
& =-r \sin \lambda \cos \phi \hat{\underline{z}}+r \cos \lambda \cos \phi \hat{y} \\
\left|\frac{\partial r}{\partial \lambda}\right| & =\left(r^{2} \sin ^{2} \lambda \cos ^{2} \phi+r^{2} \cos ^{2} \lambda \cos ^{2} \phi\right)^{\frac{1}{2}} \\
& =r \cos \phi \\
\hat{\lambda} & =-\sin \lambda \hat{\underline{a}}+\cos \lambda \hat{\underline{y}} \tag{A}
\end{align*}
$$

Can also show that

$$
\begin{aligned}
& \hat{\phi}=-\cos \lambda \sin \psi \underline{\hat{x}}-\sin \lambda \sin \psi \hat{y}+\cos \psi \hat{\underline{z}} \cdots(\beta) \\
& \hat{\underline{y}}=\cos \lambda \cos \psi \underline{\hat{x}}+\sin \lambda \cos \phi \underline{\hat{y}}+\sin \psi \underline{\underline{t}} \cdots(c)
\end{aligned}
$$

Returning to our expressicio

By (A): $\quad \frac{\partial \hat{\hat{\lambda}}}{\partial \hat{\lambda}}=-\cos \lambda \hat{\hat{x}}-\sin \lambda \hat{y}$
Need to express this in terms of $(\hat{\lambda}, \underline{\hat{\phi}}, \hat{i})$
General solution: invert equations (A), (B) \& (C)
In His case, can see that $\frac{\partial \hat{\imath}}{\partial \hat{\lambda}}$ point inwards towards the z axis. In particilar, has no component in $\hat{\jmath}$

From (B) and (C) see that

$$
\begin{aligned}
\sin \psi \underset{\sim}{\hat{\phi}}-\cos \phi \hat{\underline{\imath}}= & \left(-\cos \lambda \sin ^{2} \psi-\cos \lambda \cos ^{2} \psi\right) \hat{x} \\
& \left(-\sin \lambda \sin ^{2} \psi-\sin \lambda \cos ^{2} \psi\right) \hat{y} \\
& (\sin \psi \cos \psi-\sin \psi \cos \psi) \hat{2}^{2} \\
= & -\cos \lambda \hat{x}-\sin \lambda \hat{y} \\
= & \frac{\partial \hat{\lambda}}{\partial \lambda}
\end{aligned}
$$

$$
\begin{aligned}
\frac{D \hat{\lambda}}{D \hat{d}} & =\frac{u}{r \cos \psi}(-\sin \psi \hat{\underline{\phi}}-\cos \psi \hat{\underline{r}}) \\
& =-\frac{u \tan \psi}{r} \underline{\underline{\phi}}-\frac{u}{r} \underline{\hat{}} \\
\frac{D(u \hat{\lambda})}{D t} & =\frac{D u}{D t} \hat{\hat{d}}-\frac{u^{2} \tan \psi}{r} \underline{\hat{\psi}}-\frac{u^{2}}{r} \hat{\underline{r}}
\end{aligned}
$$

Do the same for $v \underline{\underline{q}}$ and $w \underline{\tilde{r}}$ to get full sol \underline{n}.

Problem 3.
(a)

Thermodynamic eq*

$$
C_{\nu} \frac{D T}{D t}+P \frac{D \alpha}{D t}=Q
$$

Adiabatic flow: $Q=0$

$$
\begin{equation*}
C \cdot \frac{D T}{D t}+P \frac{D \alpha}{D t}=0 \tag{1}
\end{equation*}
$$

Now, $\quad p \alpha=$ Rat

$$
\begin{aligned}
\frac{D(p \alpha)}{D t}= & R a \frac{D T}{D t} \\
\frac{\alpha D P}{D t}+ & P \frac{D \alpha}{D t}=R d \frac{D T}{D t} \\
& P \frac{D \alpha}{D t}=R \alpha \frac{D T}{D t}-\alpha \frac{D P}{D t}
\end{aligned}
$$

Substitute into (1):

$$
\text { cu } \frac{D T}{D t}+R d \frac{D T}{D t}-2 \frac{D P}{D t}=0
$$

let $C_{p}=C_{u}+R_{d}$

$$
C_{P} \frac{D T}{D t}-\alpha \frac{D P}{D t}=0
$$

Divide by T

$$
\frac{C P}{T} \frac{D T}{D t}-\frac{\alpha}{T} \frac{D P}{D t}=0
$$

$$
\begin{aligned}
p \alpha= & R d T \\
\frac{\alpha}{T}= & \frac{R d}{p} \\
& \frac{C_{p}}{\Gamma} \frac{D T}{D t}-\frac{R d}{P} \frac{D p}{D t}=0
\end{aligned}
$$

Divide by C_{p} :

$$
\frac{1}{T} \frac{D T}{D t}-\frac{R d}{C_{p}}\left(\frac{1}{P} \frac{D P}{D t}\right)=0
$$

$$
\Rightarrow \quad D \quad D t\left\{\ln (T)-\frac{R Q}{C P} \ln (P)\right\}=0
$$

Add

$$
\begin{gathered}
\frac{D}{D t}\left(\frac{R d}{C_{p}} \ln \left(P_{0}\right)\right)=0 \\
\frac{D}{D t}\left\{\ln (T)-\frac{R d}{C_{p}} \ln (P)+\frac{R d}{C_{\rho}} \ln \left(P_{0}\right)\right\}=0 \\
\left.\frac{D}{D t}\left\{\ln (T)-\ln \left[\frac{\rho}{P_{0}}\right)^{\frac{R d}{C_{\rho}}}\right]\right\}=0 \\
\frac{D}{D t}\left\{\ln \left[T\left(\frac{P_{0}}{\rho}\right)^{\frac{R d}{C_{\rho}}}\right]\right\}=0 \\
\frac{D}{D t}\left[T\left(\frac{P_{0}}{P}\right)^{\frac{R d}{C \rho}}\right)=0 \\
\frac{D \theta}{D t}=0 .
\end{gathered}
$$

(b) Buoyancy $b=-g\left(\frac{p-p_{0}}{\rho} \quad \quad \rho=\right.$ parcel density $\quad \rho_{0}=$ enuronment density

Assume parcel \& encorment have same pressure have that $\quad \rho=\frac{p}{R d \theta \pi}$ t $\rho_{0}=\frac{P}{R_{d} \theta_{0} \pi}$

$$
b=-g \frac{\left(\frac{p}{n a \theta \pi}-\frac{p}{\pi d \theta_{0} \pi}\right)}{\frac{p}{n_{d} \theta \pi}}=-g \frac{\left(\frac{1}{\theta}-\frac{1}{\sigma_{0}}\right)}{\frac{1}{\theta}}
$$

Multiply top $\$$ bottom by $\theta \theta_{0}$

$$
b=-g\left(\frac{\theta_{0}-\theta}{\theta_{0}}\right)=g \frac{\left(\theta-\theta_{0}\right)}{\theta_{0}}
$$

Now, suppose we have an environment with

$$
\theta_{0}=\theta_{0}(z)
$$

Perturb a accel within Miss ennronment from $z \rightarrow z+\delta z$

Parcel conserves θ, so at $z+\delta z$
navel: $\quad \theta=\theta_{0}(z)$
environment: $\quad \theta_{0}=\theta_{0}(z+\delta z)$

Heme

$$
\begin{aligned}
& b=\left(\frac{\theta_{0}(z)-\theta_{0}(z+\delta z)}{\theta_{0}(z+\delta z)}\right) g \\
& b=-\frac{g}{\theta_{0}(z+\delta z)} \delta z\left(\theta_{0}\left(\frac{(z+\delta z)-\theta_{0}(z)}{\delta z}\right)\right.
\end{aligned}
$$

for $\delta z \rightarrow 0$

$$
b=-\frac{g}{\theta_{0}} \frac{\partial \theta_{0}}{\partial z} \delta z
$$

(c) Have $\frac{D w}{D t}=b$

$$
\begin{aligned}
& \frac{D w}{D t}=\frac{-g}{\theta_{0}} \frac{\partial \theta_{0}}{\partial z} \delta z \quad \text { vertical displacement of parol. } \\
& W=\frac{D \delta z}{D t} \\
& \frac{D^{2} \delta z}{D t^{2}}=-\frac{g}{\theta_{0}} \frac{\partial \theta_{0}}{\partial z} \delta z \\
& \frac{D^{2} \delta z}{D t^{2}}=-N^{2} \delta z \\
& \delta z(t)=A \exp (i N t)+\text { Bexpl}(-i N t)
\end{aligned}
$$

for $\frac{\partial \theta_{0}}{\partial z}>0, N^{2}>0$: oscillation, free of N.
for $\frac{\partial \theta_{0}}{\partial z}<0, N^{2}<0$: exponential growth: unstatilily.

Problem 4.
Assume no pressure gradicils:

$$
\begin{aligned}
& \frac{D u}{D t}=f v \\
& \frac{D v}{D t}=-f u \\
& \frac{D}{D t} \text { of } E q(1): \\
& \frac{D^{2} u}{D t^{2}}=f \frac{D v}{D t} \quad
\end{aligned} \quad(f \text {-plane })
$$

Substintere into (2)

$$
\frac{D^{2} u}{D t^{2}}=-f^{2} u
$$

Initial card:

$$
\begin{aligned}
& u=u_{0} \\
& v=\frac{1}{f} \frac{D u}{D t}=0
\end{aligned}
$$

Solution is

$$
u=A \cos (f t)+B \sin (f t)
$$

Initial condinan gives $A=u_{0}, B=0$

$$
\begin{aligned}
& u=u_{0} \cos (f t) \\
& v=\frac{1}{f} \frac{D u}{D t}=-u_{0} \sin (f t)
\end{aligned}
$$

Remember $u=\frac{D x}{D t} \Rightarrow x=x_{0}+f u_{0} \sin (f t)$

$$
v=\frac{D y}{D t} \Rightarrow y=y_{0}+f u_{0} \cos (f t)
$$

Circular motion with frequency $\frac{f}{2 \pi}=\frac{2 \Omega \sin \varphi}{2 \pi}$

- These are called inertial circles.
- Can be seen in the oxen
- Frequency highest at poles, goes to zero at equator

