
1. Introduction
The thermodynamic structure of the tropical troposphere has long been known to be strongly influenced by 
moist convection. Simple models based on a statistical balance between radiative cooling of the atmosphere and 
heating by convection, known as radiative-convective equilibrium (RCE; Manabe & Strickler, 1964), have been 
shown to capture important characteristics of the tropical-mean temperature (Singh & O’Gorman, 2013) and 
humidity (Romps, 2014) profiles. Despite this, uncertainties remain in the response of tropospheric temperature 
and humidity to warming, and these uncertainties have implications for our understanding of climate model reli-
ability, the response of global-mean surface temperature to an external forcing (climate sensitivity), and changes 
in severe convective storms with warming.

For example, a persistent discrepancy in the magnitude of enhanced warming in the tropical upper troposphere 
between satellite observations and historical global climate model simulations (e.g., Douglass et al., 2008; Santer 
et al., 2008, 2017) has called into question model reliability, among other possible explanations. Enhanced warm-
ing of the tropical upper troposphere, associated with a decrease in the rate at which temperature decreases with 
height (the lapse rate), is expected in a convecting atmosphere where temperature profiles lie near a moist adiabat 
(Manabe & Stouffer, 1980; Manabe & Wetherald, 1967). This so-called “lapse-rate feedback” acts as a negative 
feedback on warming since it enables the atmosphere to radiatively cool to space more effectively (Colman & 
Soden, 2021). At the same time, the water vapor content of the atmosphere increases with warming following the 
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Clausius-Clapeyron relation, assuming roughly constant relative humidity, and this causes a strong positive feed-
back on warming (Manabe & Wetherald, 1967). Uncertainty in the combined water vapor-lapse rate feedback is 
driven largely by model spread in the magnitude and pattern of relative humidity changes in the tropics (Colman 
& Soden, 2021).

The deviation of the atmospheric thermal stratification from that of an undilute moist adiabat results in convec-
tive available potential energy (CAPE), which is an important predictor of severe thunderstorm activity (e.g., 
Brooks et al., 1994). CAPE is expected to increase in response to warming (Seeley & Romps, 2015; Singh & 
O’Gorman,  2013), leading to a projected increase in severe thunderstorm activity (Diffenbaugh et  al.,  2013; 
Lepore et al., 2021; Singh et al., 2017) and lightning (Romps et al., 2014). But models disagree on the rate at 
which CAPE increases with warming (Singh et al., 2017), and questions remain as to the ability of climate models 
to accurately represent CAPE changes, given their difficulties reproducing observed upper-tropospheric temper-
ature trends. For these and other reasons, it is important to improve our understanding of controls on tropical 
stability and relative humidity and its representation in models.

Here we investigate the stability and humidity distributions in the simple case of RCE as a stepping stone to under-
standing the full tropical thermodynamic structure. In addition to being the simplest possible way to frame many 
important questions about the climate system, RCE is valuable by being accessible to a variety of different model 
types, including those that parameterize convection such as general circulation models (GCMs) and single-column 
models (SCMs) and those that explicitly simulate convection such as cloud-resolving models (CRMs) and large-
eddy simulation (LES) models. This flexibility was recently leveraged to construct the Radiative-Convective 
Equilibrium Model Intercomparison Project (RCEMIP; Wing et al., 2018; Wing et al., 2020a).

RCEMIP revealed great diversity in the simulated tropical climate, including in mean profiles of temperature, 
humidity and cloudiness (Wing et  al.,  2020a). There was no systematic difference between the intermodel 
spread in models with parameterized convection and those with explicit convection. RCEMIP consisted of a 
small-domain configuration that generally prohibited convective self-aggregation, which is the spontaneous 
organization of convection despite homogeneous boundary conditions and forcing (Wing et  al.,  2017), and a 
large-domain configuration that permitted self-aggregation. The presence of aggregation has profound effects 
on the simulated RCE climate, including effects on the radiation balance (Becker & Wing, 2020), precipitation 
extremes (Pendergrass, 2020), as well as the mean state; the atmosphere is warmer and drier with fewer high 
clouds when convection is more aggregated (Wing, 2019; Wing et al., 2020a). However, Wing et al.  (2020a) 
reported a large intermodel spread in both tropospheric stability and humidity even among the small-domain 
RCEMIP simulations that were not aggregated, indicating that processes other than aggregation contribute to 
variations in the mean state across the ensemble. Here, we focus on the disaggregated case, and we analyze 
small-domain simulations within the RCEMIP ensemble in order to achieve the following objectives:

1.  Document the thermodynamic structure of the mean state across models and under warming in the small 
domain, unaggregated RCEMIP simulations.

2.  Provide a physical understanding of what controls the intermodel spread and what leads to changes in the 
stability and relative humidity with warming.

In order to address our second objective, we leverage recent theoretical developments that provide a framework 
within which to interpret differences in the thermodynamic structure of RCE simulations of different models and 
at different temperatures. Specifically, Singh and O’Gorman (2013) introduced the zero-buoyancy plume model 
to explain relationships between humidity and lapse rate in RCE (Singh et al., 2019). By including the water 
budget of the plume and its environment, Romps (2014) developed a full model for the stability and humidity 
in RCE. According to this model, the thermodynamic structure in RCE is controlled by two main effects: the 
entrainment and detrainment between moist convection and its environment; and the reevaporation of condensed 
water produced by convection in the environment. The model therefore allows one to relate differences in stability 
and humidity in the RCE state to differences in fundamental aspects of moist convection. We will use this frame-
work to investigate the control of stability and relative humidity in the RCEMIP ensemble.

Section 2 briefly reviews the setup of the RCEMIP simulations and examines their thermodynamic structure. 
Section 3 reviews the relevant theory, introduces a method for diagnosing the theory-implied values of entrain-
ment and precipitation efficiency, and tests this method in a suite of CRM simulations with perturbed phys-
ics. Section 4 applies the diagnostic method to the RCEMIP simulations and uses the theory-implied values 
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of entrainment and precipitation efficiency to attribute the causes of intermodel spread in CAPE and relative 
humidity. Section 5 decomposes the changes in CAPE with warming into contributions from various factors. 
Section 6 provides a summary.

2. Thermodynamic Structure in RCEMIP Simulations
2.1. RCEMIP Simulations

Here we briefly review the setup of the RCEMIP simulations. The protocol is fully described by Wing et al. (2018) 
and an overview of the simulations is provided by Wing et al. (2020a). RCEMIP consists of RCE simulations at 
three different sea surface temperatures (SST = 295, 300, and 305 K) in two different domains (RCE_small and 
RCE_large) across models with explicit convection and those with parameterized convection. The simulations 
are non-rotating with no land. The SST and insolation are uniform in space and time, and motion is initialized 
by random noise. Here we consider only the RCE_small simulations, whose configurations are summarized in 
Table 1. By focusing on the RCE_small simulations in which convection is quasi-randomly distributed in space 
and time, we avoid the potentially complicating influence of convective self-aggregation (Wing et al., 2017). We 
examine 27 sets of simulations with explicit convection and 11 with parameterized convection (see Table S1 in 
Supporting Information S1 for a list, and the Supporting Information of Wing et al. (2020a) for more detailed 
descriptions of each model). Of the models examined by Wing et al. (2020a), we exclude several that are miss-
ing the data necessary for the analysis here. We also exclude the UKMO-RA1-T simulations at all SSTs and the 
DALES and DALES-damping simulations at 305 K because these simulations unexpectedly exhibited convective 
self-aggregation, as evidenced by their broad distribution of precipitable water and column relative humidity 
variance that is at least an order of magnitude larger than the other RCE_small simulations (Wing et al., 2020a). 
All analysis here is performed using horizontally- and time-averaged fields, with the time average excluding the 
first 75 days of simulation.

2.2. Thermodynamic Structure

The RCEMIP ensemble exhibits a wide spread in various aspects of the simulated climate, including profiles of 
temperature and humidity (Figure 1, see also Figures 7 and 8 in Wing et al. (2020a)). This occurs for both models 
with parameterized convection and those with explicit convection. The temperature profiles are systematically 
cooler than a moist adiabat, consistent with theory that they are set by dilute ascent, in which entrainment reduces 
cloud updraft moist static energy (Seeley & Romps, 2015; Singh & O’Gorman, 2013). Here, we compute the 
moist adiabat by lifting a parcel from the time- and domain-mean temperature and water vapor mixing ratio at 
the lowest model level assuming no precipitation fallout. We treat ice using a mixed-phase range, in which the 
fraction of condensate that is frozen increases linearly in temperature between 273.15 and 233.15 K. Since our ice 
treatment involves a mixed-phase region, the ascent is not reversible, despite all condensate remaining with the 
parcel. Saturation is calculated assuming air is a Rankine-Kirchoff gas (Romps, 2021), and the lifting condensa-
tion level (LCL) pressure is calculated using the method of Romps (2017). The ensemble-mean peak deviation 
from a moist adiabat in the upper troposphere is between 4 and 10 K, depending on the SST, but this peak devia-
tion varies by ∼7–15 K across models (Figures 1a–1c). These deviations from a moist adiabat imply a substantial 
amount of instability; indeed, the average convective available potential energy (CAPE) at 300 K is 2,022 J kg −1 

Simulation type Model type Convection Domain size Grid spacing Vertical levels

RCE_small CRM Explicit ∼100 × ∼100 km 2 1 km ∼74

RCE_small_vert VER Explicit ∼100 × ∼100 km 2 1 km ∼146

RCE_small_les LES Explicit ∼100 × ∼100 km 2 200 m ∼146

RCE_small GCRM Explicit 52 km radius sphere 1 km 74

RCE_small SCM Parameterized Single Column N/A As in CMIP6

RCE_small WRF-GCM Parameterized ∼100 × ∼100 km 2 50 km 48

Note. Each simulation is performed at SST = 295, 300, and 305 K.

Table 1 
RCEMIP Simulation Configurations

 19422466, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003914 by N
ational H

ealth A
nd M

edical R
esearch C

ouncil, W
iley O

nline L
ibrary on [25/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

WING AND SINGH

10.1029/2023MS003914

4 of 21

(Figure 2a). The models with parameterized convection on average have higher CAPE (2,284 J kg −1) than those 
with explicit convection (1,935 J kg −1), but if one considers the subset of models with explicit convection that 
have the finest vertical and horizontal grid spacing (the RCE_small_les simulations), they have the highest 
average CAPE values (2,477 J kg −1). This is true also for individual models; each RCE_small_les simulation 
has higher CAPE than its RCE_small_vert counterpart, which in turn has higher CAPE than its RCE_small 
counterpart (Figure S5 in Supporting Information S1). As shown in Figure 2a, there is substantial intermodel 
spread in CAPE; at 300 K the standard deviation across all models is 731 J kg −1.

The relative humidity also varies substantially across models at all SSTs and at all altitudes, including in the 
lower-troposphere (2–5 km) where at SST = 300 K it ranges from 35% to 90% (Figures 1d–1f). The relative 
humidity is computed over liquid at temperatures above freezing and over ice at temperatures below freezing, 
according to each model's formulation for saturation. In the original RCEMIP output, several models inadvertently 
reported relative humidity with respect to saturation over water at all temperatures. We use the relative humidity 
values that were corrected by Wing et al. (2020a) to be with respect to saturation over ice at temperatures below 

Figure 1. Thermodynamic profiles across the RCEMIP simulations at 295 K (left; a, d), 300 K (center; b, e), and 305 K (right; c, f). Top row (a–c): Difference between 
the density temperature of a moist adiabat and the time- and domain- mean density temperature in the corresponding simulation. The moist adiabat is computed by 
lifting a parcel from the lowest model level with no precipitation fallout. Bottom row (d–f): Relative humidity (RH), computed over liquid at temperatures above 
freezing and over ice at temperatures below freezing, as in Wing et al. (2020a). The x-axis is capped at 120% RH.
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freezing using the Wagner and Pruß (2002) and Wagner et al. (2011) formulations. Many models are saturated 
or super-saturated with respect to ice near the tropopause, which is consistent with in situ aircraft-based obser-
vations of ice supersaturated regions up to 100 km in scale (Diao et al., 2017). As noted by Wing et al. (2020a), 
model-to-model variability in near surface relative humidity does not explain the spread in the free troposphere 
(i.e., shifting the profile such that all models start from the same surface value does not reduce the intermodel 
spread).

As shown in Figures 1a–1c, the buoyancy profiles shift upwards and the average deviation from a moist adiabat 
increases with warming. This can be seen more clearly in Figures S1–S4 of the Supporting Information S1, which 
plot the profiles at each SST for individual models. The increase in buoyancy leads to an increase in CAPE with 
warming, which is on average 9.2% K −1 across all models from 295 to 305 K (Figure 2b). We note that there is 
one outlier with a CAPE scaling of 18.9% K −1; we discuss this further in Section 5. Recent theoretical work has 
argued that CAPE in RCE increases with warming roughly following the Clausius-Clapeyron rate of increase of 
saturation vapor pressure, ∼6% K −1 (Romps, 2016). While there are some differences in the magnitude of the 
CAPE increase across models of different types, nearly all models exhibit CAPE increases that are faster than that 
implied by the Clausius-Clapeyron relation. Romps (2016) pointed out some conditions in which CAPE could 
increase more quickly with warming, but another possible reason for this discrepancy is that characteristics of 
convective clouds, such as their mixing and microphysical properties that are assumed constant by Romps (2016), 
actually change under warming in the simulations. We now seek to quantify how these characteristics vary, both 
under warming and across the RCEMIP ensemble, by employing a simple model of convection based on an 
entraining plume.

3. A Model for the Thermodynamic Structure in RCE
We use a model known as the zero-buoyancy plume (ZBP) model, introduced by Singh and O’Gorman (2013) and 
further developed by Romps (2014), as a diagnostic tool to elucidate how variations in convective entrainment 
and microphysical processes across the RCEMIP ensemble may explain their mean thermodynamic structure.

3.1. ZBP Theory

The ZBP model describes convection as a steady-state entraining plume in a subsiding environment. It provides 
a solution for the temperature and humidity structure of the RCE atmosphere by making the twin assumptions 
that the plume is approximately neutrally buoyant with respect to its environment (Singh & O’Gorman, 2013), 
and that the humidity of the environment is determined by a balance between moistening through convective 
detrainment and drying through clear-air subsidence between clouds (Romps, 2014).

Figure 2. Distribution of CAPE at 300 K (a) and its response to warming (from 295 to 305 K) (b) across the RCEMIP 
simulations, for models with parameterized convection (PAR; red), models with explicit convection in the RCE_small 
configuration (CRM; dark blue), models with explicit convection in the RCE_small_vert configuration (VER; medium 
blue), and models with explicit convection in the RCE_small_les configuration (LES; cyan). The filled circles indicate 
the mean across each group of models. In panel (b), the black filled circle indicates the Clausius-Clapeyron scaling, based on 
the percent change in the saturation vapor pressure with warming, evaluated at 300 K.
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According to the ZBP model, the tropospheric lapse rate deviates from a moist adiabat because of the effect of 
entrainment on air parcels rising through clouds. As the entrainment rate ϵ increases, clouds experience more 
mixing with the dry environment, and the free troposphere becomes more unstable. The free tropospheric humid-
ity is set by the detrainment of water vapor and cloud water from convection. The environmental humidity there-
fore depends on the detrainment rate δ and an assumed precipitation efficiency PE, which represents the fraction 
of condensation that reaches the surface as precipitation, with the remaining cloud water being ejected and 
evaporating in the environment.

By assuming that the height dependent entrainment rate ϵz and the height dependent detrainment rate δz are equal, 
Romps (2016) used the ZBP model to derive an approximate analytic formula for CAPE in RCE that depends 
on the temperature TLCL and pressure pLCL of the LCL, the temperature of the level of neutral buoyancy TLNB, 
and the parameter a = ϵzPEγ −1, where PE is the precipitation efficiency and γ = ∂z ln q* is the fractional vertical 
gradient of saturation specific humidity. To obtain analytic solutions, Romps (2016) took a and PE as constant 
in the vertical, requiring the vertical variations in ϵz to follow those of γ. Here, we diagnose a by considering the 
values of γ and ϵz at the LCL to be inputs, which we denote γLCL and ϵ, respectively. This implies that ϵz increases 
with height following the decrease of γ −1 (the water vapor scale height) with height. While an increase in ϵz with 
height is not entirely realistic (Romps, 2010), estimates of γ from the RCEMIP simulations indicate that most of 
the increase occurs above 5 km, above the region where the entrainment rate most strongly affects the lapse rate. 
Thus, while ϵ specifically refers to the entrainment rate calculated at the LCL, we will simply refer to it as the 
entrainment rate hereafter.

The formula for CAPE is given in full in Equations A1–A4 in Appendix A. A key outcome of the formula is 
that, for fixed parameters ϵ, PE, γLCL, and TLNB, CAPE increases with TLCL following Clausius-Clapeyron scaling 
(Romps, 2016). The ZBP model also provides a formula for the environmental relative humidity that may be 
written as a simple function of the model parameters as

RH =
𝛾𝛾LCL(1 − PE) + 𝜖𝜖PE

𝛾𝛾LCL + 𝜖𝜖PE
. (1)

Since we have assumed that a is constant, the relative humidity in our ZBP solutions also does not vary vertically.

The black and gray lines in Figure  3 show the CAPE and relative humidity (RH) predicted by Equations  1 
and A1–A4, respectively, for varying entrainment rate ϵ and precipitation efficiency PE and fixed values of γLCL, 
TLCL, pLCL, and TLNB. TLCL, pLCL, and TLNB are calculated from model simulations using the methods described 
above in Section 2.2 to compute the LCL and moist adiabat. γLCL is determined by computing saturation specific 
humidity from the simulated temperature and pressure profiles, following the treatment of saturation described 
above in Section 2.2. The q* profiles are smoothed using a 5-point running average in the vertical before calculat-
ing γ = ∂z ln q* using a centered difference in height. The γ profiles are then linearly interpolated to the pressure 
of the LCL to provide an estimate of γLCL.

The resultant two-dimensional phase space graphically shows how the instability and environmental humidity of 
the RCE atmosphere vary with the characteristics of convection. According to the ZBP model, the environmen-
tal relative humidity increases with the entrainment rate and decreases with the precipitation efficiency. Since 
entrainment and detrainment are assumed equal, an increase in entrainment moistens the environment through 
increased detrainment of water vapor and condensate, while a decrease in precipitation efficiency is associated 
with greater cloud and rain evaporation in the environment. In contrast, CAPE increases with both the entrain-
ment rate and precipitation efficiency. A higher entrainment rate results in more mixing of the cloud with its 
environment, leading to a larger lapse rate and CAPE. A higher precipitation efficiency leads to a drier environ-
ment, increasing the effect of entrainment on the lapse rate, and also leading to a larger lapse rate. Note that, for 
fixed precipitation efficiency, CAPE actually increases with the environmental relative humidity. This is because 
increases in entrainment cause both an increase in CAPE, through their effect on the lapse rate, and an increase 
in environmental humidity through the increase in convective detrainment.

The CAPE-RH phase space provides a connection between readily diagnosed properties of the RCE simulations 
and physical parameters of convection such as the entrainment rate and precipitation efficiency. The phase space 
therefore allows one to investigate the physical mechanisms controlling the variations in stability and humid-
ity both across models and with warming in the RCEMIP ensemble. Before we attempt such an investigation, 
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however, we demonstrate that the precipitation efficiency derived by applying the ZBP model (theory-implied 
PE, PEtheory) provides a reasonable estimate of the microphysical precipitation efficiency diagnosed directly from 
precipitation and total condensation (PEactual). A close correspondence between PEtheory and PEactual would provide 
evidence that our theory-based estimates of precipitation efficiency and entrainment rate are capturing real vari-
ations of these quantities within the simulations.

3.2. Application to Perturbed Physics Simulations

To test the application of the ZBP theory, we conduct a series of RCE simulations in which we perturb the 
microphysical parameterization in the model in order to vary the precipitation efficiency. In these simulations, 
we output the instantaneous microphysical sink of water vapor by condensation in order to calculate the total 
condensation rate and diagnose the true microphysical precipitation efficiency (PEactual) and compare it to that 
derived using the ZBP theory (PEtheory). Note that RCEMIP did not request the output of gross condensation rates, 
so we can only diagnose PEactual from this new set of simulations.

A total of 15 simulations are conducted with version 13 of the Cloud Model 1 (CM1; Bryan & Fritsch, 2002) 
with slight modifications following Singh and O’Gorman (2013) and perturbations to the microphysics scheme 
described below. This is a different version of the model to that submitted to RCEMIP, but was used because it 
includes the ability to output microphysical tendencies directly. The simulations are otherwise conducted follow-
ing the RCEMIP RCE_small protocol (Section 2.1; Wing et al., 2018), with a doubly periodic domain of hori-
zontal dimensions 96 km × 96 km, a 1 km horizontal grid spacing, and 74 unevenly spaced vertical levels. Each 
simulation was run over an SST of 300 K for 100 days, and we present results averaged over the domain and over 
the last 25 days.

Our control simulation uses a single-moment 5-species microphysics scheme based on that of Lin et al. (1983) 
as modified by Tao and Simpson (1993) and Braun and Tao (2000), in which the rimed ice species takes the 
characteristics of hail. We then conduct further simulations in which parameters within the microphysics scheme 

Figure 3. The perturbed physics ensemble in CAPE-RH phase space, based on CAPE and lower-tropospheric relative 
humidity computed using the domain- and time-mean properties of the simulations. The microphysical precipitation 
efficiency (PEactual) in these simulations is color shaded. The black and gray lines indicate the values of precipitation 
efficiency (PEtheory) and entrainment (ϵ) implied by ZBP theory, respectively. The purple line indicates a line of best fit, with 
the linear correlation coefficient indicated in the legend.
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are perturbed in order to achieve a wide range of precipitation efficiencies 
in RCE. Specifically, we introduce three parameters that govern the physics 
perturbations:

1.  We multiply the model-calculated autoconversion rates of cloud water 
to rain and cloud ice to snow by a factor Amag. We further multiply the 
model's accretion of cloud water by rain drops and accretion of cloud ice 
by snow by the same factor.

2.  We multiply the threshold mass concentration of cloud water below 
which autoconversion to rain does not occur by a factor Athresh. We further 
multiply the threshold mass concentration of cloud ice below which 
snow autoconversion does not occur by the same factor.

3.  We set the terminal velocities of all hydrometeors to a value Vt. This 
change affects the rate at which the hydrometeors fall to the ground, but 
it does not affect the microphysical process rates, which are calculated 
using the terminal velocities calculated with the original scheme.

Note that these changes do not directly impact condensation rates within the 
model, rather they only affect the conversion of condensed water or ice into 
precipitating hydrometeors. Any dynamical effects on convection are indi-
rect, although they may be substantial nonetheless.

The values of the parameters Amag, Athresh, and Vt for our perturbed physics 
simulations are given in Table 2. Note that the range of values we simulate 
is not intended to represent plausible values of microphysical parameters but 
is simply used to ensure the resultant precipitation efficiency varies over as 
wide a range as possible. We define PEactual as the domain- and time-mean 
precipitation rate divided by the domain- and time-mean gross condensa-

tion rate. We evaluate this directly using outputs of the microphysical sink of water vapor for each simulation 
(Table 2), giving values in the range 0.19 in the control to 0.51 in the simulation with the highest PEactual.

The results of our perturbed physics simulations are plotted on the CAPE-RH phase space in Figure 3. Here the 
theoretical curves (black and gray lines) are calculated based on the mean values of γLCL, TLCL, pLCL, and TLNB 
across the perturbed-physics ensemble. The simulated value of RH is taken as a mass-weighted mean between 2 
and 5 km, since we expect the lower-tropospheric humidity to be most influential in determining the lapse rate 
throughout the troposphere (Seeley & Romps, 2015). We explored the sensitivity to averaging RH over various 
ranges of heights between 1 and 6 km, and while the actual values vary, our conclusions below are robust to the 
choice of heights. The CAPE is calculated as the integral of the positive buoyancy from a parcel initialized from 
the lowest model level and lifted adiabatically without precipitation fallout to the level of neutral buoyancy as 
described in Section 2.

Both RH and CAPE vary across the perturbed physics simulations, with higher PEactual (represented by colors) 
generally corresponding to lower RH and higher CAPE. The simulations lie roughly along the ϵ = 0.3 km −1 line, 
which is a good match to direct measurements of entrainment in modeling studies (e.g., Romps, 2010). This 
suggests that the bulk of the variations in CAPE and RH in the simulations are driven by variations in precipita-
tion efficiency. This is consistent with the nature of the perturbations, which directly affect only the conversion 
of cloud condensate to precipitation, and not the dynamics, and it provides support for the ZBP model as giving 
reasonable diagnoses of precipitation efficiency across the simulations. However, we note that the theory-implied 
entrainment is also affected by our microphysical perturbations, varying by more than a factor of two across the 
simulations.

To calculate PEtheory in a more quantitative way, we plot each perturbed physics simulation within a CAPE-RH 
phase space calculated using the values of γLCL, TLCL, pLCL, and TLNB taken from the corresponding simulation (not 
shown). We then estimate the ϵ and PE contours that pass through the location of the simulation in phase space to 
derive a theory-implied value of the entrainment rate and precipitation efficiency (PEtheory).

Figure 4a shows that PEtheory is closely related to PEactual, with a correlation coefficient of 0.96 across the perturbed 
physics ensemble. Moreover, the results lie relatively close to the one-to-one line, indicating PEtheory is a good 

Simulation Amag Athresh Vt (m s −1) PEactual

Control 1 1 – 0.19

1 1 0.01 – 0.22

2 3 0.01 – 0.25

3 5 0.01 – 0.26

4 10 0.01 – 0.29

5 1 1 2 0.23

6 1 1 8 0.25

7 5 1 8 0.43

8 1 1 15 0.24

9 1 0.1 15 0.31

10 1 0.01 15 0.34

11 5 1 15 0.31

12 5 0.01 15 0.46

13 10 1 15 0.36

14 10 0.01 15 0.51

Note. Where the terminal velocity is given as “–,” the original terminal 
velocities calculated by the microphysics scheme are used. The final column 
gives resultant precipitation efficiency (PEactual).

Table 2 
Parameters Used in Perturbed Physics Simulations
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estimate of PEactual, although PEactual is slightly underestimated, particularly 
when it is low. Nevertheless, the close correspondence of PEtheory to PEactual 
strengthens our confidence in using the CAPE-RH phase space to derive 
physical parameters of moist convection within the RCE simulations. In 
Section 4, we will apply this method to the RCEMIP ensemble, and we will 
use it to diagnose the physical mechanisms affecting humidity and stability 
across the ensemble.

Finally, we derive a proxy for the precipitation efficiency (PEproxy) that is 
independent of the ZBP model but can be calculated from standard model 
outputs and can thus be applied to the RCEMIP simulations. The definition 
of the microphysical precipitation efficiency (PEactual) may be written

PEactual =
𝑃𝑃

𝑃𝑃 + 𝐸𝐸
, (2)

where P is the domain-averaged surface precipitation rate and E is the 
domain-mean, column-integrated rate of evaporation of cloud and precip-
itation condensates. We now make a simple parameterization for E as an 
exponential decay of the total column condensed water W. That is,

𝐸𝐸 =
𝑊𝑊

𝜏𝜏
 (3)

for some evaporation timescale τ. We therefore may write the precipitation 
efficiency

PEactual ≈

𝜏𝜏𝜏𝜏

𝑊𝑊

1 +
𝜏𝜏𝜏𝜏

𝑊𝑊

. (4)

Approximating the timescale τ as a constant and assuming that PEactual is 
small, as is generally true in the simulations, the precipitation efficiency will 
roughly scale as

PEactual ∝
𝑃𝑃

𝑊𝑊
. (5)

We therefore define a proxy for the precipitation efficiency as PEproxy = P/W. 
This is identical to the macro-scale precipitation efficiency defined by Li 
et  al.  (2022), except that here we include precipitating condensates in the 
definition of W in addition to cloud condensate. Note that PEproxy has units 
of s −1, and we therefore cannot compare its absolute value to PEactual (which 
is unitless).

For the perturbed physics ensemble, there is a strong relationship between 
PEactual and PEproxy, with a correlation of 0.94 across the ensemble. We there-
fore will use PEproxy as an alternative estimate of the precipitation efficiency 
that can be estimated for the RCEMIP ensemble and used to compare to 
PEtheory derived from the ZBP model.

As an aside, we note that, across simulations with the model used for the perturbed physics ensemble (CM1) 
at different SSTs, PEtheory and its correspondence with PEactual and PEproxy is sensitive to which heights are used 
to diagnose the lower-tropospheric RH (not shown). This is because in CM1, the change in RH with warming 
switches sign around 4.5 km. PEactual and PEproxy increase modestly with warming in CM1, but this is only captured 
by PEtheory if RH is averaged below 4.5 km. This is consistent with the notion that the precipitation efficiency 
PEactual is most sensitive to microphysical processes in the lower troposphere, where the bulk of the condensation 
occurs. We emphasize though that the correspondence between PEactual, PEtheory, and PEproxy across the perturbed 
physics ensemble at a given SST, which is not sensitive to the precise heights used, is strong evidence for the 

Figure 4. Relationship between PEactual in the perturbed physics ensemble and 
(a) the precipitation efficiency implied by ZBP theory (PEtheory) and (b) the 
precipitation efficiency proxy (PEproxy; s −1).
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validity of using the ZBP theory to diagnose PEtheory. Further, we also tested the results presented below in 
Sections 4 and 5 to the heights over which RH is averaged, considering 42 different height ranges in which the 
lower bound is drawn from [1 km: 0.5 km: 4 km] and the upper bound is drawn from [3 km: 0.5 km: 6 km]. None 
of the broad conclusions are qualitatively sensitive to the heights used (not shown), indicating that it is perhaps 
just bad luck that the dependence of RH and thus PEtheory with warming in CM1 is strongly sensitive to height.

4. Contributions to Intermodel Spread in Thermodynamic Structure
We now apply the methodology described and tested in Section  3 to diagnose the theory-implied values of 
entrainment and precipitation efficiency (PEtheory) in the RCEMIP simulations and decompose the intermodel 
spread in CAPE, relative humidity, and their changes with warming into contributions from model-to-model 
variability in various factors.

4.1. CAPE-RH Phase Space

First we construct the CAPE-RH phase space for the RCEMIP simulations, and use this to diagnose the 
theory-implied values of entrainment and precipitation efficiency (PEtheory), as shown in Figure 5. As in Figure 3, 
the ϵ and PEtheory lines in Figure 5 are computed using the model-mean values of γLCL, TLCL, pLCL, and TLNB, as 
a representative visual. However, when we diagnose the values of entrainment and PEtheory for each model, we 
compute the theoretical CAPE and relative humidity from the model-specific values of the LCL and LNB (effec-
tively we create a separate version of Figure 5 for each model). This is more accurate, though the results are qual-
itatively similar if the model-mean values are used instead. The lower-tropospheric relative humidity and CAPE 
are computed in the same manner as for the perturbed physics simulations described in Section 3.2.

Figure 5 demonstrates that models with higher lower-tropospheric relative humidity have higher values of CAPE 
(i.e., more instability). The correlation is statistically significant at the 95% level for models with explicit convec-
tion and at the 90% level for models with parameterized convection. This relationship is counterintuitive, as one 
might have expected that, in a moister atmosphere, entrainment would be less effective at reducing cloud updraft 
moist static energy, allowing the atmosphere to convect closer to a moist adiabat and thus have lower CAPE. This 
would be the case if relative humidity were imposed externally (as in Singh and O’Gorman (2013) and Seeley 
and Romps (2015)) or if the value of entrainment was fixed (i.e., along a gray line in Figure 5). However, when 
CAPE and relative humidity are both determined internally, they are both influenced by both entrainment and 
PE (Section 3). And, as is clear from Figure 5, neither entrainment nor PEtheory appear fixed across models (the 
scatter points fall on neither the black nor gray lines). As discussed in Section 3, if PEtheory were fixed (following 
the black lines in Figure 5), then the theory predicts that higher entrainment would lead to both higher CAPE and 
higher relative humidity. This is the same sign as the relationship found in the RCEMIP simulations, suggesting 

Figure 5. The RCEMIP ensemble in CAPE-RH phase space based on CAPE and lower-tropospheric relative humidity, 
for (a) models with parameterized convection and (b) models with explicit convection. The proxy precipitation efficiency 
(PEproxy; s −1) is color shaded; models without the data necessary to compute the proxy precipitation efficiency are shown in 
black. The black and gray lines indicate the values of precipitation efficiency (PEtheory) and entrainment (ϵ) implied by ZBP 
theory, respectively. The purple line indicates a line of best fit, with the linear correlation coefficient indicated in the caption.
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that the CAPE-RH relationship is driven by different values of entrainment across models. However, the slope of 
the line of best fit for RCEMIP is less steep than the PEtheory contours, indicating that variations in PEtheory across 
models also contribute.

The color shading in Figure 5 shows PEproxy (Section 3.2). While the values are not directly comparable, the 
PEproxy values tend to increase from right to left in CAPE-RH phase space, approximately following increasing 
PEtheory. The correlation between PEtheory and PEproxy is r = 0.81 for models with explicit convection (not shown), 
which, while statistically significant at the 99% level, is not quite as strong as that for the perturbed physics simu-
lations (Figure 4b). The correlation for models with parameterized convection is r = 0.58 (statistically significant 
at the 90% level), but this correlation is entirely driven by two outlier models. The weaker relationship between 
PEtheory and PEproxy in RCEMIP could reflect shortcomings in PEproxy when applied to the diverse spectrum of 
RCEMIP models or inaccuracies in the ZBP theory (Section 3). While we were careful to compute PEproxy with 
the correct condensed water outputs from each model, we also cannot rule out errors in the RCEMIP output. 
There is a large spread in PEproxy values across the RCEMIP simulations, particularly for the models with param-
eterized convection (the colorbar is saturated at 6 × 10 −4 s −1; the largest value is 9 × 10 −3 s −1). The relationship 
between PEtheory and PEproxy across the RCEMIP ensemble is robust to the range of heights used to estimate the 
lower-tropospheric RH (not shown). Further, Figures S1–S4 in Supporting Information S1 show that the ZBP 
model has skill in reproducing the vertical structure of parcel buoyancy within each model. In particular, the ZBP 
model reproduces the increase and deepening of the buoyancy profiles with warming as seen in the simulations, 
and has some skill in matching the buoyancy magnitudes simulated by each model. The agreement is a bit better 
if, rather than assuming the vertical variation in ϵz matches that of γ, we instead assume constant entrainment with 
height, but this would preclude the analytical CAPE decomposition in Section 5. These results provide further 
support for our use of the ZBP model to diagnose entrainment and precipitation efficiency from the simulations.

We also note that the relationship between CAPE and relative humidity is qualitatively similar if just the subset 
of models with RCE_small_vert and RCE_small_les versions is used (Figure S5 in Supporting Informa-
tion S1), though the correlations are no longer significant given the small sample size. There are not any notable 
dependencies of relative humidity or theory-implied entrainment and PEtheory on the vertical and horizontal reso-
lution, but there is a tendency for CAPE to increase with finer vertical and horizontal grid spacing, as also noted 
above in Section 2.

4.2. Intermodel Spread of CAPE and RH

In order to more quantitatively attribute the intermodel spread in CAPE and RH to model-to-model variations 
in entrainment or PEtheory, we use the ZBP model (Equations 1 and A1–A4) to recompute the theoretical CAPE 
and relative humidity values in which we allow only one of the parameters (ϵ, PEtheory, TLNB, γLCL) to vary across 
models. For instance, to assess the role of entrainment in explaining the intermodel spread, we calculate the theo-
retical CAPE and relative humidity for each model using the model-specific values of theory-implied entrainment 
that we diagnosed, but the model-mean values of PEtheory, γLCL, and TLNB.

If one uses the model-specific values of all parameters to compute the theoretical CAPE this returns the simulated 
CAPE since the ZBP model is, by construction, able to reproduce the CAPE and RH values from the simulations 
given the diagnosed parameters ϵ and PEtheory. By comparing the correlation coefficients and range of theoretical 
CAPE values in Figure 6, in which only γLCL, or only TLNB, or only PEtheory, or only the entrainment are allowed 
to vary, we can determine which parameter exerts the strongest control on the intermodel spread in CAPE. If a 
parameter returns a theoretical CAPE with a wide range of values, this indicates that model-to-model variations 
in that parameter have a strong effect on CAPE. However, to drive the actual model-to-model variation in CAPE, 
there must also be a strong correlation between that version of theoretical CAPE and the simulated CAPE.

The highest correlation and widest range of theoretical CAPE values is found in Figure  6d, indicating that 
model-to-model variations in entrainment are the most important factor controlling the intermodel spread in 
CAPE. Significant correlations are also found in Figures 6a and 6b (moreso for the CRMs than the models with 
parameterized convection), indicating that model-to-model variation in γLCL and TLNB (related to the temperature 
depth of the troposphere) also contributes to the intermodel spread in CAPE, though over a smaller range of values. 
The theoretical CAPE calculated with varying PEtheory exhibits a wide range of values, but it is uncorrelated with 
the simulated CAPE. This indicates that variations in PEtheory have a strong effect on CAPE, but do not drive the 
overall trend across models.
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Figures 7a and 7b performs the same exercise for relative humidity. We exclude the contribution from intermodel 
variability in TLNB since the equation for relative humidity (Equation 1) does not include this parameter. We also 
do not show the contribution from intermodel variability in γLCL because it is small. When allowing either PEtheory 
or entrainment to individually vary, both versions of the theoretical relative humidity have strong, statistically 
significant correlations with the simulated relative humidity (Figures 7a and 7b). However, variations in entrain-
ment result in only a small range of theoretical relative humidity values, whereas the contribution from PEtheory 
variations results in a wider range of theoretical relative humidity values that lie close to the 1:1 line and exhibit 
a higher correlation with simulated relative humidity (r = 0.98 for models with parameterized convection and 
r = 0.99 for models with explicit convection). That is, we can nearly recover the relationship between simulated 

Figure 6. Decomposition of intermodel spread in CAPE at 300 K into contributions from intermodel variability in (a) γLCL, (b) temperature of the convecting top, 
(c) precipitation efficiency (PEtheory), and (d) entrainment, for models with parameterized convection (PAR; red), models with explicit convection in the RCE_small 
configuration (CRM; dark blue), models with explicit convection in the RCE_small_vert configuration (VER; medium blue), and models with explicit convection 
in the RCE_small_les configuration (LES; cyan).
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and theoretical relative humidity by considering only model-to-model variations in PEtheory. Therefore, while 
model-to-model variation in entrainment does contribute, model-to-model variation in PEtheory is the dominant 
factor controlling intermodel spread in relative humidity.

4.3. Intermodel Spread of Changes in CAPE and RH With Warming

Next, we consider the intermodel spread in the changes in CAPE with warming. This is assessed by comparing 
the change in simulated CAPE with the change in the various versions of theoretical CAPE between 295 and 
305 K. For example, to diagnose the role of model-to-model variability in entrainment, we compute theoretical 

Figure 7. Decomposition of intermodel spread in relative humidity at 300 K (top row; a, b) and its changes with warming (bottom row; c, d) into contributions from 
intermodel variability in (left column; a, c) precipitation efficiency (PEtheory), and (right column; b, d) entrainment, for models with parameterized convection (PAR; 
red), models with explicit convection in the RCE_small configuration (CRM; dark blue), models with explicit convection in the RCE_small_vert configuration 
(VER; medium blue), and models with explicit convection in the RCE_small_les configuration (LES; cyan).

 19422466, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003914 by N
ational H

ealth A
nd M

edical R
esearch C

ouncil, W
iley O

nline L
ibrary on [25/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

WING AND SINGH

10.1029/2023MS003914

14 of 21

CAPE at 305 and 295 K using the model-specific entrainment values and model-mean γLCL, PEtheory, and TLNB 
at each of those temperatures, and we then take the difference between the two. This isolates the effects of 
model-to-model variability in entrainment, but it still allows all parameters to change with warming.

All of the models exhibit increases in CAPE with warming, but the rates vary between 4.3% and 11.8% K −1, 
with an outlier at 18.9% K −1 (Figures 2 and 8). For models with parameterized convection, the only significant 
correlation occurs when entrainment is allowed vary across models (Figure 8d). Further, the outlier only emerges 
when entrainment is allowed to vary across models; see Section 5 for more discussion. However, for models with 

Figure 8. Decomposition of intermodel spread in changes in CAPE with warming into contributions from intermodel variability in changes in (a) γLCL, (b) temperature 
of the convecting top, (c) precipitation efficiency (PEtheory), and (d) entrainment, for models with parameterized convection (PAR; red), models with explicit convection 
in the RCE_small configuration (CRM; dark blue), models with explicit convection in the RCE_small_vert configuration (VER; medium blue), and models with 
explicit convection in the RCE_small_les configuration (LES; cyan).
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explicit convection, the change in theoretical CAPE with warming captures some of the variability in the change 
in simulated CAPE with warming both when TLNB varies across models and when entrainment does (Figures 8b 
and 8d), and, to a lesser extent, γLCL (Figure 8a). The correlation is actually stronger for TLNB (r = 0.85) than 
entrainment (r  =  0.60), which seemingly implies that model-to-model variability in TLNB at different SSTs 
contributes most to the intermodel spread in the CAPE changes. However, when TLNB varies across models, the 
range of values of the change in theoretical CAPE is small. Model-to-model variations in PEtheory do influence 
the range of values of the change in theoretical CAPE, but these are uncorrelated with the simulated CAPE 
(Figure 8c). Thus, as was the case for CAPE itself, we conclude that model-to-model variability in entrainment at 
different SSTs contributes most to the intermodel spread in the CAPE changes with warming.

Finally Figures 7c and 7d decomposes the intermodel spread in the changes in relative humidity with warming. 
Lower-tropospheric relative humidity changes only slightly with warming; the average rate across all models 
is 0.3% K −1, with a 5%–95% confidence interval of 0.03%–0.6% K −1 and range from −0.9% to 2.8% K −1 (see 
y-axis in Figures 7c and 7d). All the models with relative humidity increases greater than 2% K −1 are models with 
parameterized convection. As was the case for the intermodel spread in relative humidity itself, model-to-model 
variations in PEtheory dominate the intermodel spread in changes in relative humidity.

As an aside, we note that changes in PEtheory with warming are uncorrelated with changes in PEproxy with warm-
ing (not shown). PEproxy increases with warming across most of the models, consistent with Li et al. (2023), but 
PEtheory instead decreases in about half the models (changes in PEtheory range from −4.0% to 3.2% K −1). The large 
changes in PEproxy with warming (half the models have increases greater than 4% K −1) would imply larger changes 
in relative humidity than are found (Figures 7c and 7d). Thus, if one assumes that the theory for relative humidity 
is accurate, this would seem to cast some doubt on the ability of PEproxy to capture changes with climate warm ing. 
However, the change in PEtheory with warming is slightly sensitive to the range of heights used to derive the 
lower-tropospheric average RH; if lower heights are used (below 3 km), then there is a weak positive correlation 
between PEtheory and PEproxy. Therefore, we cannot rule out the possibility of increases in precipitation efficiency 
with warming.

5. Decomposition of CAPE Response to Warming
Section 4.3 applied a decomposition to explain the intermodel spread in the changes in CAPE and relative humid-
ity with warming. Here, we instead consider the magnitude of the CAPE response to warming and seek to explain 
why it increases and why, on average and in nearly all individual models, it does so at a rate greater than that 
expected from the Clausius-Clapeyron relation (Figures 2 and 8).

We decompose the response of CAPE to warming 𝐴𝐴

(

𝑑𝑑CAPE

𝑑𝑑𝑑𝑑

)

 by considering the dependence of CAPE on the six 
parameters in the framework of the ZBP theory: TLCL, pLCL, TLNB, ϵ, PE and γLCL) (Section 3, Romps, 2016). Thus, 
the response of CAPE to warming is given by:

𝑑𝑑CAPE
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑LCL

𝑑𝑑𝑑𝑑
𝜕𝜕CAPE
𝜕𝜕𝑑𝑑LCL

+
𝑑𝑑𝑑𝑑LCL

𝑑𝑑𝑑𝑑
𝜕𝜕CAPE
𝜕𝜕𝑑𝑑LCL

+ 𝑑𝑑𝑑𝑑LNB

𝑑𝑑𝑑𝑑
𝜕𝜕CAPE
𝜕𝜕𝑑𝑑LNB

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕CAPE
𝜕𝜕𝑑𝑑

+ 𝑑𝑑PE
𝑑𝑑𝑑𝑑

𝜕𝜕CAPE
𝜕𝜕PE

+
𝑑𝑑𝑑𝑑LCL

𝑑𝑑𝑑𝑑
𝜕𝜕CAPE
𝜕𝜕𝑑𝑑LCL

.
 (6)

The partial derivatives in Equation 6 are derived analytically from Equations A1–A4 (see Appendix A) and eval-
uated based on the values of the parameters at 300 K. The response to warming of each of the parameters and 
CAPE itself (the total derivatives in Equation 6) are evaluated based on the difference in the simulated values 
and theory-implied values for ϵ and PE (PEtheory) between the 295 and 305 K simulations. The response of CAPE 
to warming 𝐴𝐴

(

𝑑𝑑CAPE

𝑑𝑑𝑑𝑑

)

 and the contributions from changes in each of the parameters (each term on the right hand 
side of Equation 6) are expressed as relative rates of change (% K −1) by scaling the rates of change (per degree K 
of SST warming) by the value of CAPE at 300 K. A residual is computed as the difference between the left and 
right hand sides of Equation 6. Unlike in Section 4, all calculations are done using parameter values specific to 
each model, so this decomposition assesses how changes in TLCL, pLCL, TLNB, ϵ, PEtheory, and γLCL with warming in 
explain the change of CAPE with warming in each model.

Figure 9 shows the results of this decomposition. It is immediately evident that most of the CAPE increase with 
warming comes from warming of the atmosphere (TLCL), which drives an increase in the saturation humidity at 
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cloud base. Changes in pLCL have a negligible influence on CAPE and the residual is small. The contribution from 
changes in TLNB is near zero in most models, generally consistent with small changes in anvil cloud temperatures 
(Stauffer & Wing, 2022). The average change in TLNB is 0.1 K per degree of SST warming, which is a result of 
cancellation between the 21 models that exhibit a slight increase and the 17 that exhibit a slight decrease. Anvil 
cloud temperatures, on the other hand, increase slightly with warming across 84% of the RCE_small simulations 
at an average rate of 0.36 K per degree of SST warming (Stauffer & Wing, 2022), which is more consistent with the 
proportionally higher anvil temperature hypothesis (PHAT; Zelinka & Hartmann, 2010) than the fixed anvil temper-
ature hypothesis (FAT; Hartmann & Larson, 2002). These differences notwithstanding, the results are consistent 
with the first order view that the temperature of the convecting top is relatively insensitive to warming. We note that 
there are two models (ICON-NWP-CRM and MicroHH) for which changes in TLNB contribute more strongly to a 
∼2%–3% K −1 increase in CAPE. These models exhibit the largest decreases in TLNB (1.2–1.6 K cooling per degree 
SST warming), representing a deepening of the convecting layer. The model in which TLNB has the largest negative 
contribution to CAPE changes, WRF-CRM, exhibits a 1.8 K warming of TLNB per degree SST warming.

Increases in the water vapor scale height (γ −1) across all models, or decreases in γ, contribute an additional 
increase in CAPE beyond that expected just from TLCL, which helps increase CAPE beyond that expected from 
Clausius-Clapeyron. Indeed, Romps (2016) pointed out that under conditions where ϵ did not vary with warming, 
the temperature dependence of γ would further increase CAPE under warming. Across all models, 𝐴𝐴 𝐴𝐴

−1

LCL
 increases 

an average of 2.45% K −1, while γ −1 averaged between 2 and 5 km increases an average of 4.30% K −1. For refer-
ence, the average value of γ −1 between 2 and 5 km is 3.38 km and 𝐴𝐴 𝐴𝐴

−1

LCL
 is 2.94 km.

The contributions to CAPE changes from the remaining parameters, entrainment and precipitation efficiency 
(PEtheory), are scattered around zero and have the largest intermodel spread. This is consistent with Figure 8 and 
the conclusions from Section 4.3. The model-mean contributions of entrainment and PEtheory changes to CAPE 
changes are both near zero, particularly across CRMs. The models with parameterized convection are more likely 
to have decreases in entrainment with warming than those with explicit convection. Note that the entrainment 
contribution in Figure 9 reflects implied changes in entrainment at cloud base. The dependence of simulated γ 
on height implies an entrainment above cloud base that tends more toward a decrease with warming: 70% of the 
models exhibit a decrease in the 2–5 km average ϵz with warming while 30% exhibit an increase.

As noted earlier, ICON-NWP-CRM is an outlier, with a much larger increase in CAPE than other models (see 
also Figures 2 and 8). The decomposition in Figure 9 indicates this is due to a combination of contributions 
from an increase in entrainment, a decrease in TLNB, and the residual, each of which is the largest of any model. 
Amongst the models with parameterized convection, the model with the largest increase in CAPE also has the 
largest entrainment contribution, largest TLCL contribution, and smallest PEtheory contribution.

Figure 9. Changes in CAPE with warming and its decomposition into contributions from changes with warming of TLCL, pLCL, TLNB, entrainment (ϵ), precipitation 
efficiency (PE), γLCL, and a residual (Resid.), from Equation 6, for (a) models with parameterized convection and (b) models with explicit convection. In the box plots, 
the red line is the median, the bottom and top edges of the box are the lower and upper quartiles, respectively, and the whiskers extend to 1.5 times the interquartile 
range. The black asterisk is the mean. The dashed black line is the change in CAPE with warming expected from Clausius-Clapeyron, based on the percent change in 
the saturation vapor pressure with warming, evaluated at 300 K.
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One somewhat unexpected result is that even the TLCL contribution to changes in CAPE is greater than that 
expected from Clausius-Clapeyron. This is in apparent opposition to Romps (2016), who indicated that CAPE 
scaled with the surface saturation specific humidity over a wide range of temperatures (including those consid-
ered here). While changes in TLNB, ϵ, PEtheory, or γ could modify this scaling, we find a super-Clausius-Clapeyron 
scaling even when those changes are excluded. The primary factor influencing this behavior is the fact that we 
compute changes with respect to 10 K of SST warming (305–295 K), but TLCL increases at a slightly faster rate 
than SST. On average, TLCL increases 10.9 K over the 10 K SST warming. Across models, TLCL increases range 
from 9.45 to 12.99 K, and 34 out of the 38 models exhibit TLCL increases that are greater than 10 K. Therefore, 
the saturation vapor pressure at cloud base increases more quickly than that at the SST (6.4% K −1 vs. 6.0% K −1). 
If we compute the changes in CAPE and its decomposition with respect to changes in TLCL rather than SST, 
the model-mean 𝐴𝐴

𝜕𝜕CAPE

𝜕𝜕𝜕𝜕LCL

 is 6.9% K −1, with a range of 6.6%–7.3% K −1. This indicates that the ZBP model predicts 
an increase in CAPE based on changes in TLCL that are very close to but slightly higher than that predicted by 
Clausius-Clapeyron. Another factor that may contribute is nonlinear behavior in CAPE (Equations A1–A4) that 
is neglected when we linearly decompose its contributions from each parameter (Equation 6). We also note that 
the value of the 𝐴𝐴

𝑑𝑑CAPE

𝑑𝑑𝑑𝑑
 contribution from TLCL and how close it is to the Clausius-Clapeyron scaling is sensitive to 

whether we scale by the value of CAPE at 300 K or at 295 K (to compute a % K −1) and which parameter values 
we use to compute the CAPE derivatives and the Clausius-Clapeyron scaling.

The above conclusions are broadly similar when we consider the subset of models with RCE_small_vert and 
RCE_small_les versions (Figure S6 in Supporting Information S1). In RCE_small_les, the entrainment 
contribution is more negative and the PE contribution is more positive than in its coarser resolution counterparts. 
The overall CAPE increase is slightly smaller in RCE_small_les, though still greater than that expected from 
Clausius-Clapeyron.

The above results are robust to the precise choice of heights used to average relative humidity when using the 
ZBP model to diagnose ϵ and PEtheory. The exact range of values for the entrainment and precipitation efficiency 
contributions vary somewhat for different height ranges (i.e., lean more toward negative or more toward positive), 
but are always spread on either side of zero. The intermodel spread in these contributions, and the residual, is 
smallest for ranges of heights close to 2–5 km, which is what we use.

6. Conclusions
While the RCE framework is simple in principle, there are many degrees of freedom in how the balance between 
convective heating and radiative cooling is obtained. Given the same domain size, resolution, boundary condi-
tions, thermal forcing, and trace gas profiles, RCEMIP (Wing et al., 2018) made clear that there is no agreed upon 
RCE state, even if one excludes the complications of convective aggregation (Wing et al., 2020a). Furthermore, 
it is difficult to attribute the widely varying thermodynamic profiles (Figure 1) to any particular model character-
istic, given the range of dynamical cores and subgrid scale parameterizations present in the RCEMIP ensemble.

Here, we leveraged recent theoretical developments to provide a physical understanding of what controls the 
intermodel spread in stability and relative humidity and its changes with warming in RCEMIP. We introduced a 
CAPE-RH phase space based on the ZBP model (Romps, 2014, 2016; Singh & O’Gorman, 2013) as a diagnostic 
tool to estimate values of entrainment and PE, and attribute variations in the simulated thermodynamic states 
to variations in these parameters. The theory-implied values of PE (PEtheory) agree well with microphysical PE 
(PEactual) directly computed from a suite of perturbed physics simulations with a cloud-resolving model, lending 
confidence to our approach.

We found that models that are moister in the lower troposphere have greater instability (higher CAPE). This is 
qualitatively consistent with entrainment control of both properties, in which a higher entrainment rate results in 
greater CAPE, by leading to a larger lapse rate, and greater environmental humidity through an increase in convec-
tive detrainment. However, both theory-implied entrainment and PEtheory (as well as a proxy for PE, PEproxy) vary 
across models. Using the ZBP model to perform a quantitative decomposition, we found that model-to-model 
variations in theory-implied entrainment explain most of the intermodel spread in CAPE and its changes with 
warming, but model-to-model variations in PEtheory explain the spread in relative humidity.

The lower-tropospheric relative humidity exhibits small changes with warming (the 5%–95% confidence interval is 
0.03%–0.6% K −1), consistent with theory and climate model simulations (Po-Chedley et al., 2019; Romps, 2014). 
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CAPE, on the other hand, increases strongly with warming, at a rate (average of 9.2%  K −1) larger than that 
expected from the Clausius-Clapeyron relation (6% K −1). By deriving an analytical expression for the change in 
CAPE with warming based on the ZBP model, we decomposed the response of CAPE into contributions from 
changes in each of the six parameters (TLCL, pLCL, TLNB, ϵ, PE, and γLCL). We confirmed that most of the CAPE 
increase with warming comes from the warming of the atmosphere itself, in which the increase in TLCL drives 
an increase in saturation humidity at cloud base. Decreases in γ with warming, or increases in the water vapor 
scale height γ −1, which are also ultimately linked to warming temperatures, contribute to additional increases in 
CAPE. The contribution from changes in the temperature of the convecting top TLNB is near zero in most models.

The remaining parameters, entrainment and precipitation efficiency, do not exhibit a consistent change with 
warming and thus their contributions to CAPE changes are scattered around zero and have a large intermodel 
spread. Outlier changes in these parameters contribute to outlier changes in CAPE. The entrainment and precip-
itation efficiency contributions are more negative and more positive, respectively, in our limited subset of LES 
models. This indicates that entrainment changes might be sensitive to resolution, and it would be beneficial to 
confirm the theory-implied results here with more direct measures of entrainment.

On the other hand, our results do not support a substantial increase in PE with warming, as suggested by appli-
cation of a proxy PE (PEproxy) to RCEMIP and comprehensive GCM simulations (Li et al., 2022, 2023). Instead, 
we find that the theory-implied PE (PEtheory) change with warming, and thus its contribution to CAPE changes, is 
on average near-zero. However, this is slightly sensitive to the range of heights used to define lower-tropospheric 
relative humidity, and so the lack of agreement between PEtheory and PEproxy with warming could reflect the height 
sensitivity of relative humidity changes, flaws in the ZBP theory, or limitations in the proxy, and we cannot 
rule out an increase in PE with warming. The large intermodel spread in both PEtheory and PEproxy underlines our 
incomplete understanding of what sets PE and uncertainty in how it responds to warming.

Our conclusions are based on an analysis of the unaggregated RCE_small simulations. A natural extension of 
this work is thus to consider the influence of convective aggregation on the results found here. While it is known 
that the presence of aggregation substantially reduces mean relative humidity and enhances the dryness of dry 
regions (Wing, 2019; Wing et al., 2020a), this framework could be used to investigate how CAPE, entrainment, 
PE and their responses to warming are influenced by aggregation and its variability across models and with 
warming. Preliminary analysis suggests that the relationship between CAPE and relative humidity is qualitatively 
similar in the aggregated RCE_large simulations, but further investigation of the control of stability and rela-
tive humidity under conditions of convective aggregation is of great relevance to our understanding of climate 
feedbacks and changes in extremes (such as severe convective storms and heavy rainfall events) with warming.

Appendix A: CAPE and Its Derivatives
Romps (2016) used the ZBP model to derive an analytic equation for the CAPE given the temperature TLCL and 
pressure pLCL at the LCL, the temperature of the level of neutral buoyancy TLNB, and the parameter 𝐴𝐴 𝐴𝐴 = 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖

−1

LCL
 . 

This equation may be written

CAPE =
𝑅𝑅𝑑𝑑

2𝑓𝑓
[(𝑦𝑦𝑎𝑎, 𝑓𝑓 , 𝑓𝑓LCL, 𝑓𝑓LNB) − (𝑦𝑦0, 𝑓𝑓 , 𝑓𝑓LCL, 𝑓𝑓LNB)], (A1)

where the function 𝐴𝐴  is defined below, Rd is the dry gas constant, and

𝑓𝑓 =
𝐿𝐿𝑣𝑣

𝑅𝑅𝑣𝑣𝑇𝑇
2

0

−
𝑐𝑐𝑝𝑝

𝑅𝑅𝑑𝑑𝑇𝑇0

. (A2)

Here Lv is the latent heat of vaporization, cp is the isobaric specific heat capacity of dry air, and 𝐴𝐴 𝐴𝐴0 =
𝐴𝐴LCL + 𝐴𝐴LNB

2
 . 

The function 𝐴𝐴 (𝑦𝑦𝑎𝑎, 𝑓𝑓 , 𝑓𝑓LCL, 𝑓𝑓LNB) is given by

(𝑦𝑦𝑦 𝑦𝑦 𝑦 𝑦𝑦LCL𝑦 𝑦𝑦LNB) = 𝑊𝑊 (𝑦𝑦)[2 − 2𝑦𝑦 (𝑦𝑦LCL − 𝑦𝑦LNB) +𝑊𝑊 (𝑦𝑦)]

−𝑊𝑊

(

𝑒𝑒
−𝑦𝑦(𝑦𝑦LCL−𝑦𝑦LNB)𝑦𝑦

)[

2 +𝑊𝑊

(

𝑒𝑒
−𝑦𝑦(𝑦𝑦LCL−𝑦𝑦LNB)𝑦𝑦

)]

𝑦
 (A3)

where 𝐴𝐴 𝐴𝐴 (𝑦𝑦) is the Lambert-W function (Romps, 2016), and 𝐴𝐴 𝐴𝐴𝑎𝑎 is given by

 19422466, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003914 by N
ational H

ealth A
nd M

edical R
esearch C

ouncil, W
iley O

nline L
ibrary on [25/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

WING AND SINGH

10.1029/2023MS003914

19 of 21

𝑦𝑦𝑎𝑎 =
𝐿𝐿𝑣𝑣𝑞𝑞

∗

LCL

(1 + 𝑎𝑎)𝑅𝑅𝑑𝑑𝑇𝑇0

exp

(

𝐿𝐿𝑣𝑣𝑞𝑞
∗

LCL

(1 + 𝑎𝑎)𝑅𝑅𝑑𝑑𝑇𝑇0

)

, (A4)

where 𝐴𝐴 𝐴𝐴
∗

LCL
 is the saturation specific humidity at the LCL. The variable 𝐴𝐴 𝐴𝐴0 is given by 𝐴𝐴 𝐴𝐴𝑎𝑎 for a = 0.

To evaluate the sensitivity of the CAPE described by Equations A1–A4 to its input parameters, we calculate the 
partial derivatives of the CAPE with respect to the six input arguments represented by the vector x = (TLCL, pLCL, 
TLNB, ϵ, PE, γLCL). By the chain rule we have that,

𝜕𝜕CAPE

𝜕𝜕𝐱𝐱
= −

CAPE

𝑓𝑓

𝜕𝜕𝑓𝑓

𝜕𝜕𝐱𝐱
+

𝑅𝑅𝑑𝑑

2𝑓𝑓

[

𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝐱𝐱
+

𝜕𝜕

𝜕𝜕𝑓𝑓

𝜕𝜕𝑓𝑓

𝜕𝜕𝐱𝐱
+

𝜕𝜕

𝜕𝜕𝜕𝜕LCL

𝜕𝜕𝜕𝜕LCL

𝜕𝜕𝐱𝐱
+

𝜕𝜕

𝜕𝜕𝜕𝜕LNB

𝜕𝜕𝜕𝜕LNB

𝜕𝜕𝐱𝐱

]𝑎𝑎

0

, (A5)

where the term in square brackets is given by the difference in its value at the given value of a, and at a = 0. 
Evaluating the partial derivatives of 𝐴𝐴  we have,

𝜕𝜕

𝜕𝜕𝜕𝜕
= [2 − 2𝑓𝑓 (𝑇𝑇LCL − 𝑇𝑇LNB) + 2𝑊𝑊 (𝜕𝜕)]𝑊𝑊𝜕𝜕(𝜕𝜕),

−

[

2 + 2𝑊𝑊

(

𝑒𝑒
−𝑓𝑓(𝑇𝑇LCL−𝑇𝑇LNB)𝜕𝜕

)]

𝑊𝑊𝜕𝜕

(

𝑒𝑒
−𝑓𝑓(𝑇𝑇LCL−𝑇𝑇LNB)𝜕𝜕

)

𝑒𝑒
−𝑓𝑓(𝑇𝑇LCL−𝑇𝑇LNB),

 (A6)

𝜕𝜕

𝜕𝜕𝜕𝜕
= −2(𝑇𝑇LCL − 𝑇𝑇LNB)𝑊𝑊 (𝑦𝑦) + (2 + 2𝑊𝑊 (𝑦𝑦))𝑊𝑊𝑦𝑦(𝑦𝑦)𝑒𝑒

−𝜕𝜕(𝑇𝑇LCL−𝑇𝑇LNB)𝑦𝑦(𝑇𝑇LCL − 𝑇𝑇LNB), (A7)

𝜕𝜕

𝜕𝜕𝜕𝜕LCL

= −2𝑓𝑓𝑓𝑓 (𝑦𝑦) + 𝑓𝑓 (2 + 2𝑓𝑓 (𝑦𝑦))𝑓𝑓𝑦𝑦(𝑦𝑦)𝑦𝑦𝑦𝑦
−𝑓𝑓(𝜕𝜕LCL−𝜕𝜕LNB), (A8)

𝜕𝜕

𝜕𝜕𝜕𝜕LNB

= 2𝑓𝑓𝑓𝑓 (𝑦𝑦) − 𝑓𝑓 (2 + 2𝑓𝑓 (𝑦𝑦))𝑓𝑓𝑦𝑦(𝑦𝑦)𝑦𝑦𝑦𝑦
−𝑓𝑓(𝜕𝜕LCL−𝜕𝜕LNB). (A9)

Here

𝑊𝑊𝑦𝑦(𝑦𝑦) =
𝜕𝜕𝑊𝑊

𝜕𝜕𝑦𝑦
=

𝑊𝑊 (𝑦𝑦)

𝑦𝑦(1 +𝑊𝑊 (𝑦𝑦))
 (A10)

is the derivative of the Lambert-W function with respect to its argument. We now evaluate the partial derivatives 
with respect to the input vector x. For TLCL and TLNB this is trivial,

𝜕𝜕𝜕𝜕LCL

𝜕𝜕𝐱𝐱
= (1, 0, 0, 0, 0), (A11)

𝜕𝜕𝜕𝜕LNB

𝜕𝜕𝐱𝐱
= (0, 0, 1, 0, 0). (A12)

For f and y, we have

𝜕𝜕𝜕𝜕

𝜕𝜕𝐱𝐱
=

[

−
2𝐿𝐿𝑣𝑣

𝑅𝑅𝑣𝑣𝑇𝑇0

+
𝑐𝑐𝑝𝑝

𝑅𝑅𝑑𝑑𝑇𝑇
3

0

]

(

1

2
, 0,

1

2
, 0, 0

)

 (A13)

𝜕𝜕𝜕𝜕

𝜕𝜕𝐱𝐱
=
[

exp(𝑧𝑧) + 𝑧𝑧 exp(𝑧𝑧)
] 𝜕𝜕𝑧𝑧

𝜕𝜕𝐱𝐱
 (A14)

where we have defined

𝑧𝑧 =
𝐿𝐿𝑣𝑣𝑞𝑞

∗

LCL

(1 + 𝑎𝑎)𝑅𝑅𝑑𝑑𝑇𝑇0

. (A15)

Using the definition of the saturation specific humidity and the Clausius-Clapeyron equation, we may write the 
derivatives of 𝐴𝐴 𝐴𝐴

∗

LCL
 as:

𝜕𝜕𝜕𝜕
∗

LCL

𝜕𝜕𝜕𝜕LCL

=

(

1 +

(

𝑅𝑅𝑣𝑣

𝑅𝑅𝑑𝑑

− 1

)

𝜕𝜕
∗

LCL

)

𝐿𝐿𝑣𝑣𝜕𝜕
∗

LCL

𝑅𝑅𝑣𝑣𝜕𝜕
2

LCL

, (A16)
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𝜕𝜕𝜕𝜕
∗

LCL

𝜕𝜕𝜕𝜕LCL

= −

(

1 +

(

𝑅𝑅𝑣𝑣

𝑅𝑅𝑑𝑑

− 1

)

𝜕𝜕
∗

LCL

)

𝜕𝜕
∗

LCL

𝜕𝜕LCL

. (A17)

This allows us to write the partial derivatives of z as,

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕LCL

=

(

1 +

(

𝑅𝑅𝑣𝑣

𝑅𝑅𝑑𝑑

− 1

)

𝑞𝑞
∗

LCL

)

𝐿𝐿
2
𝑣𝑣𝑞𝑞

∗

LCL

(1 + 𝑎𝑎)𝑅𝑅𝑑𝑑𝑅𝑅𝑣𝑣𝜕𝜕0𝜕𝜕
2

LCL

−
𝐿𝐿𝑣𝑣𝑞𝑞

∗

LCL

2(1 + 𝑎𝑎)𝑅𝑅𝑑𝑑𝜕𝜕
2

0

, (A18)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕LCL

=

(

1 +

(

𝑅𝑅𝑣𝑣

𝑅𝑅𝑑𝑑

− 1

)

𝑞𝑞
∗

LCL

)

𝐿𝐿𝑣𝑣𝑞𝑞
∗

LCL

𝜕𝜕LCL(1 + 𝑎𝑎)𝑅𝑅𝑑𝑑𝑇𝑇0

, (A19)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕LNB

= −
𝐿𝐿𝑣𝑣𝑞𝑞

∗

LCL

2(1 + 𝑎𝑎)𝑅𝑅𝑑𝑑𝜕𝜕
2

0

, (A20)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −

𝐿𝐿𝑣𝑣𝑞𝑞
∗

LCL

(1 + 𝜕𝜕)
2
𝑅𝑅𝑑𝑑𝑇𝑇0

. (A21)

Finally, the derivatives of a may be written,

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= PE∕𝛾𝛾LCL, (A22)

𝜕𝜕𝜕𝜕

𝜕𝜕PE
= 𝜖𝜖∕𝛾𝛾LCL, (A23)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕LCL

= −𝜖𝜖PE∕𝜕𝜕2
LCL

. (A24)

These previous three equations combined with A21 allow for evaluations of the derivative of z with respect to ϵ, 
PE and γLCL. Using Equations A6–A24 we may therefore evaluate the partial derivatives of CAPE with respect to 
each element of x, providing the terms required in Equation 6.

Data Availability Statement
The standardized RCEMIP data (Wing et al., 2020b) is hosted by the German Climate Computing Center (DKRZ) 
and is publicly available online at http://hdl.handle.net/21.14101/d4beee8e-6996-453e-bbd1-ff53b6874c0e. The 
RCEMIP data set includes the original model data as well as post-processed statistics, including the time- and 
domain-mean profiles used here. Other data derived from RCEMIP for this study, data from the perturbed phys-
ics simulations, and the analysis scripts are in a Zenodo repository at https://doi.org/10.5281/zenodo.10140830 
(Wing & Singh, 2023).
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