Ass 1 solutions

Problem 1.
(a) $\frac{D u}{D t}=2 \Omega \sin \phi v+\frac{u v}{R_{e}} \tan \phi-\frac{1}{r_{e} \cos f} \frac{\partial \Phi}{\delta t}+F_{x}$

Note that $\frac{D\left(R_{c} \cos \phi\right)}{D t}=-\operatorname{Re} \sin \phi \frac{D_{0}}{D t}$ by chain rule

$$
\begin{equation*}
=-\sin \phi v \quad \text { since } \quad \frac{D_{\theta}}{D t}=\frac{v}{R e} \tag{2}
\end{equation*}
$$

and $\frac{D}{D t}\left\{R_{e}^{2} \cos ^{2} \phi\right\}=-2 R_{e}^{2} \cos \phi \sin \psi \frac{D \theta}{D t}$

$$
\begin{equation*}
=-2 r_{e} \cos \phi \sin \psi v \tag{3}
\end{equation*}
$$

Multiply (1) by lecost:

$$
R_{e} \cos \phi \frac{D u}{D t}=2 n_{e} \Omega \sin \varphi \cos \phi v+u v \sin \phi-\frac{\partial \delta}{\delta \lambda}+R_{e} \cos \phi F_{x}
$$

Using (2) \& (3)

$$
\begin{aligned}
& \operatorname{Recos} \phi \frac{D u}{D t}=-\Omega \frac{D}{D t}\left\{\begin{array}{c}
\left.R_{e}^{2} \cos ^{2} \psi\right\}-u \frac{D}{\overline{D t}}\left(R_{e} \cos \phi\right)-\frac{\partial \bar{D}}{\partial \lambda} \\
b_{y}(3)(2)
\end{array} R_{e} \cos \phi F_{t}\right. \\
& R_{e} \cos \alpha \frac{D u}{D t}+\frac{u D(l \cos \phi)}{D t}+\frac{D}{D t}\left\{\Omega R_{e}^{2} \cos ^{2} \phi\right\}=\frac{-\partial \Phi}{\partial \lambda}+R_{e} \cos \phi F_{\lambda} \\
& \llcorner\text { product ale - } \\
& \frac{D}{D t}\left\{R_{e} \cos \psi u+\Omega r_{e}^{2} \cos ^{2} \psi\right\}=\frac{-\partial \phi}{\partial \varphi}+R_{e} \cos \phi F_{\lambda} \\
& \frac{D M}{D t}=\frac{-\partial \pi}{\partial \lambda}+R_{e} \cos \alpha F_{\mu}
\end{aligned}
$$

For axisymmetric flow: $\quad \frac{\partial \Phi}{\partial \lambda}=0$

For inviscid flow:

$$
F_{\lambda}=0
$$

$$
\frac{D M}{D t}=0
$$

(b) We have used the shallow fhid approximation to derive the Primitive Equations. This approximation neglects changes in r relative to Re. To be consistent win this approximation we must do the same in defining M. This we replace r with R Re in one defmitian of M.

$$
\begin{aligned}
& M_{\text {full }}=r \cos \psi(u+\Omega r \cos \phi) \\
& M_{\text {primitive }}=\operatorname{Recos} \psi(u+\Omega \text { Recos } \psi)
\end{aligned}
$$

(c) Flow on Jupiter is not atisymmetric, so Hide's theorem does not apply.
when eddies are considered, the circulation is able to transport angular momentum up the unean gradiats accounting for an equatorial jet.
2. (a) RCE. corresponds to a state in which convective heating balances radiative cooling locally within each column of the atmosphere.
\Rightarrow there is no large-scale circulation
(b) RCE solution not valid because:

- It is unstable (baroclinically, barotropically, symmetrically,
- It molares modes theorem
- Boundary condition is not atisymmetric, precludury axisymmetric solution
(c) RCE Zonal velocity at tropopause:

$$
\frac{u_{t}}{\Omega n_{e}}=\left\{\left(1-\frac{R d \ln \left(\frac{p_{s}}{s_{0}}\right)}{\Omega^{2} r_{e}^{2} \sin \phi \cos \phi} \frac{\partial \hat{T}}{\partial \phi}\right)^{\frac{1}{2}}-1\right\} \cos \phi
$$

where $\quad \hat{T}=\frac{1}{\ln \left(\frac{p_{s}}{r_{t}}\right)} \int_{\rho_{t}}^{P_{s}} T d \ln (\rho)$
Suppose we have $\hat{T}=T_{0}-\delta T \exp \left(\frac{\left.-\frac{r^{2}}{2(S C)^{2}}\right)}{2}\right.$

$$
\begin{gathered}
\frac{\partial \hat{T}}{\partial \psi}=-\frac{\delta T}{(\delta \phi)^{2}} \phi \exp \left(\frac{-\phi^{2}}{2(\delta \phi)^{2}}\right) \\
\frac{u_{t}}{\Omega n_{e}}=\left\{\left[1+\frac{R_{0} \ln \left(\frac{\rho s}{(\pi)}\right)}{\Omega^{2} n^{2} \sin \psi \cos \phi} \frac{\delta T}{(\delta \phi)^{2}} \phi \exp \left(\frac{-\phi^{2}}{2(\phi \phi)^{2}}\right)\right]^{\frac{1}{2}}-1\right\} \cos \phi
\end{gathered}
$$

Set $\quad P_{s}=1000 \mathrm{hPa}, \quad P_{t}=100 \mathrm{hPa}, \quad \delta \phi=30^{\circ}=\frac{\pi}{6}, \quad \delta T=100 \mathrm{~K}$ see attached plot.
(d) Solution undates Hide's theorem if it produces a maximum of angular momentum above the suttee.

Consider the angular momentum ot the tropopause: M_{t}
A sufficient condition for an angular mowentiun maximum above the Solace is it $M_{b}(\phi)>\Omega r_{e}^{2}$ for some ϕ. Here $\Omega \Omega_{e}^{2}$ is the angular momentum of the East h at the Equator.

In particulate, if $U_{t}(\phi=0)>0$, then $M_{t}(\phi=0)>\Omega n_{e}^{2}$ and Hoes theorem is violated.

$$
\lim _{\phi \rightarrow 0} \frac{u_{t}}{\Omega n_{e}}=\lim _{\phi \rightarrow 0}\left\{\left(1+\frac{R d}{\Omega^{2} n_{e}^{2}} \frac{\delta T}{(\delta \phi)^{2}} \frac{\phi}{\sin \phi}\right)^{\frac{1}{2}}-1\right\}
$$

Since $\lim _{\phi \rightarrow 0} \frac{\psi}{\sin \psi}=1 \quad$ (l^{\prime} Mapitals rule)

$$
\begin{aligned}
\Rightarrow & \lim _{\phi \rightarrow 0} \frac{u_{t}}{\Omega n_{e}}=\left\{\left(1+\frac{R e}{\Omega^{2} r_{e}^{2}} \frac{\delta T}{\left(\delta \theta^{2}\right.}\right)^{\frac{1}{2}}-1\right\} \\
& \lim _{\phi \rightarrow 0} \frac{u_{t}}{\pi r_{x}}>0 \quad \text { for any } \delta T>0
\end{aligned}
$$

\Rightarrow Hide's theorem is voluted.

Problem 3.
(a) Angular momentum of the solid Earth

$$
M_{E}=\oint_{V_{\text {Earl }}} \rho e^{r^{2} \cos ^{2} \phi \Omega d V}
$$

Express in spherical coords assuming $P_{e}=$ const

$$
\begin{aligned}
M_{E} & =\rho_{e} \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{R_{e}} r^{2} \cos ^{2} \phi \Omega\left(r^{2} \cos \psi\right) d r d \phi d \lambda \\
& =\rho_{e}(2 c \pi) \Omega \int_{0}^{e_{e}} r^{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{3} \phi d \psi d r \\
I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{3} \psi d \phi & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(1-\sin ^{2} \phi\right) \cos \psi d \phi
\end{aligned}
$$

let $v=\sin \psi, \quad d v=\cos \phi d \phi$

$$
I=\int_{-1}^{1}\left(1-v^{2}\right) d v=\left[v-\frac{v^{3}}{3}\right]_{-1}^{1}=\frac{4}{3}
$$

$$
\begin{aligned}
M_{E} & =2 \pi \rho_{e} \Omega\left(\frac{4}{3}\right) \int_{0}^{R_{e}} r^{4} d r \\
& =\frac{4}{3} \pi \rho_{e} \Omega \cdot 2 \cdot \frac{n_{e}^{5}}{5} \\
& =\left(\frac{4}{3} \pi e^{3} \rho_{e}\right) \cdot \frac{2 n_{e}^{2}}{5} \Omega
\end{aligned}
$$

Mass of Earth, $m_{E}=P_{e}$ (Volume of Earth)

$$
=\operatorname{Pe}\left(\frac{4}{3} \pi R_{e}^{3}\right)
$$

Hence, $\quad M_{E}=m_{E}\left(\frac{2 R_{e}^{2}}{5} \Omega\right)$
(b) Angular momentum of atmosphere:

$$
M_{\text {atm }}=\oint_{\text {Vatu }} \rho R_{e} \cos \psi\left(\Omega R_{e} \cos \psi+u\right) d U
$$

For uniform change in zonal wind Δu

$$
\begin{aligned}
\Delta M_{a r m} & =\oint_{v a m} \rho R_{e} \cos \phi \Delta u d V \\
& =\Delta u \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} R_{e} \cos \phi\left(R_{e}^{2} \cos \psi\right)\left(\int_{0}^{\infty} \rho d z\right) d \psi d \lambda
\end{aligned}
$$

where we have used the thin shell approximation to wite the Jacobian $r^{2} \cos \psi$ as $R_{c}^{2} \cos \beta$, and we have replaced the unesyal in r by an integral in z.

Now, by hydotrahic balance

$$
\int_{0}^{\infty} \rho d z=\int_{0}^{p_{S}} \frac{d p}{g}=\frac{p_{S}}{g}
$$

$$
\begin{aligned}
\Delta M_{\text {abm }} & =\frac{\Delta u \rho_{s}}{g} \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} R_{e}^{3} \cos ^{2} \phi d \phi d \lambda \\
& =\frac{\Delta u \rho_{s}}{g}\left(2 \pi r_{e}^{3}\right) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} \phi d \phi
\end{aligned}
$$

Note that $\cos (2 \phi)=2 \cos ^{2} \psi-1 \quad$ [Google]

$$
\begin{aligned}
\cos ^{2} \psi & =\frac{\cos (2 \psi)+1}{2} \\
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} \psi d \psi & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos (2 \phi)+1}{2} d \phi \\
& =\frac{\pi}{2} \\
\Delta M_{\text {atm }} & =\frac{\Delta u p_{s}}{9} \pi^{2} R_{e}^{3}
\end{aligned}
$$

(c) We have $\frac{d M_{\text {arm }}}{d t}=\frac{-d M_{\text {Earn }}}{d t}$

Integrating in time

$$
\Delta M_{\text {atm }}=-\Delta M_{\text {Fork }}
$$

\Rightarrow change in Earths angular momentum is

$$
\Delta M_{\text {EaM }}=-\frac{\Delta u P_{s}}{g} \pi^{2} n_{e}^{3}
$$

Since $M_{\text {Earl }}=m_{E}\left(\frac{2 r_{e}^{2}}{5}\right) \Omega$
and mass and radius of Eat do not change,
we have $\quad \Delta M_{E a r h}=M_{E}\left(\frac{2 n_{e}^{2}}{5}\right) \Delta \Omega$

$$
\begin{aligned}
& \text { Also } \frac{\Delta M_{\text {Earl }}}{M_{\text {Earl }}}=\frac{\Delta \Omega}{\Omega} \\
& \Rightarrow \frac{\Delta \Omega}{\Omega}=\frac{-\frac{1}{9} \Delta u P_{S} \pi^{2} R_{e}^{3}}{m_{E}\left(\frac{2 R_{e}^{2}}{5}\right)} \\
& \frac{\Delta \Omega}{\Omega}=\frac{2 \pi^{2} P_{S} R_{e}}{5 g m_{E}} \Delta u
\end{aligned}
$$

Finally, length of (Sidereal) day T is given by

$$
\begin{aligned}
& T=\frac{2 \pi}{\Omega} \\
& \frac{\Delta T}{T} \simeq-\frac{\Delta \Omega}{\Omega} \\
& \frac{\Delta T}{T}=\frac{2 \pi^{2} p_{s} R e_{e}}{5 g m_{E}} \Delta u
\end{aligned}
$$

Plugging in numbers, get $\Delta T \sim 0.3 \mathrm{~ms}$.

Day lengthen's by 0.3 ms due to change in U.

Tropopause level (100 hPa) zonal wind non-dimensionalised by the absolute velocity of the surface of the Earth at the equator. Blue line shows RCE solution and red line shows angularmomentum conserving solution.

