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Chapter 1

Introduction

This set of notes was created as a companion to the postgraduate-level unit General cir-
culation of the atmosphere that I teach at Monash University. As such, it is not meant
to be a comprehensive survey of all topics that one might consider under the umbrella of
the general circulation of the atmosphere, but rather, it is a somewhat idiosyncratic tour
through various concepts and models that could serve as an entry point to the vast general
circulation literature that has built up over the last few decades.

While the notes include a brief introduction to the governing equations (see below), this
should not be the student’s first experience studying the dynamics of the atmosphere;
ideally students should have taken undergraduate units in dynamical and physical meteo-
rology and a basic introductory unit in fluid mechanics. For those that lack some of this
background, a number of extra references are provided in section 1.3.

The notes may be roughly divided into three parts:

Part I (Chapters 1 & 2) includes a brief introduction to the basic characteristics of the
general circulation and an outline of the main analytic tools used in the following parts. In
particular, the governing equations of the atmosphere are introduced and the concept of
Reynolds averaging (as it applies to temporal and zonal means) is described. Furthermore,
we discuss some of the issues and techniques used in producing estimates of the general
circulation from observations.

Part II (Chapters 2 & 3) considers the general circulation of the atmosphere from an ax-
isymmetric perspective, where variations in the longitudinal direction may be neglected.
While Earth’s atmosphere is far from this limit, axisymmetric theory provides a reason-
able zeroth order picture for (some aspects) of the zonally-averaged tropical circulation.
Additionally, it has been argued (Held and Hou, 1980) that the importance of zonal asym-
metries (i.e., eddies) in shaping the large-scale characteristics of the circulation may be
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2 Introduction

best appreciated by first considering the circulation in their absence.

Part III (Chapters 5-8) analyses the effects of eddies and their importance for determining
the basic structure of the circulation from the perspective of the angular-momentum budget.
In particular, the observed transports of angular-momentum within the atmosphere are
introduced, and the relationship between latitudinal angular-momentum transport, zonal
jets, and the meridional overturning is elucidated. The combined effects of eddy momentum
and eddy heat transports on the zonal-mean circulation are then analysed through the
powerful framework of the Transformed Eulerian Mean. Finally, the effect of eddies on the
tropical circulation is considered, and the limitations of the axisymmetric theory presented
in Part II are discussed.

In a future edition, these notes will include an additional Part IV in which two other
important atmospheric budgets are discussed: those of energy and water vapour. For the
present time, however, these budgets are not discussed in detail.

The notes are designed to be read in sequence, as certain concepts used later are introduced
in preceding chapters, and they are designed to be covered in roughly one to one-and-a-
half semesters. Parts I-III are taught as a one-semester postgraduate-level unit at Monash
University. Because of this relative brevity, I have picked particular aspects of general
circulation theory to focus on and skipped others entirely. More complete treatments of
various topics can be found in a range of other texts; some of these are described in section
1.3.

1.1 What is the general circulation?

The subject of these notes is the general circulation of the atmosphere. But what do
we actually mean by “general” circulation, and how does this differ from the study of
atmospheric dynamics?

The American Meteorological Society’s online glossary includes the following definition of
the general circulation of the atmosphere:

“In its broadest sense, the complete statistical description of large scale atmo-
spheric motions.”

This definition has two aspects. The first is straightforward–the general circulation has
to do with “large-scale” atmospheric motions. Typically, this refers to motions that are
at synoptic scales and larger. Secondly, the study of the general circulation is concerned
with a statistical description of the flow. Thus, we are here concerned with aspects of the
atmospheric flow that do not depend on the detailed initial conditions of a given realisation.
We do not wish to explain or predict the particular position of the midlatitude jet next
week, for example. Instead, we are interested in understanding the dynamical processes
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that give rise to a jet in the first place, as well as the physical parameters that determine
its mean position, the extent of its fluctuations, or indeed whether there should be multiple
jets in each hemisphere.

Another key aspect of general circulation studies is a focus on how the atmosphere fulfils
its role in the cycling of various quantities–energy, momentum, water, and other chemicals–
through the climate system. In these notes we will place a particular focus on transports
of angular momentum (Chapter 5), and future editions will include chapters on the energy
and water budgets of the atmosphere. Ultimately, atmospheric transports of these various
quantities are effected by the flow systems that make up the day-to-day weather that might
be the focus of a course on dynamical meteorology. But in the study of the atmospheric
general circulation, we are interested in weather systems primarily for their contribution
to the overall atmospheric transports.

While a full description of the general circulation includes statistics of the three dimen-
sional wind and thermodynamic fields and their spatial and seasonal variation, a particular
focus historically has been the time- and zonal-mean meridional overturning circulation.
Readers should be familiar with the components of this overturning–the Hadley, Ferrel,
and Polar cells; a primary focus of these notes will be to explain how these circulations
come about. A clear picture of this three-celled overturning circulation only emerged about
a century ago. Until that time, considerable argument remained as to the meridional and
vertical extent of the cells, and indeed the number of cells within each hemisphere. This
historical development is beautifully summarised in the following concise and very readable
essay:

Lorenz, E., 1983: A history of prevailing ideas about the general circulation of the atmo-
sphere. Bulletin of the American Meteorological Society, 64, 730–769

which students are encouraged to read.

1.2 Observational preliminaries

In this section we present an overview of the observed general circulation along with some
questions that will motivate the presentations in later chapters. A first question one might
ask is how best to estimate the general circulation. Most observations of the climate system
(e.g., surface air temperature measurements) are taken at irregular time and/or space
intervals, but to quantify time averages and other statistics, a regular grid is most useful.
The plots shown in this chapter are based on datasets that use a variety of techniques to
produce estimates of the circulation on a latitude-longitude grid. In particular, a number
of plots in this chapter use the NCEP-DOE reanalysis dataset (Kanamitsu et al., 2002),
which combines observations and the output of a numerical model to obtain an estimate
of the three-dimensional state of the atmosphere through time. In Chapter 2, we will
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Figure 1.1: Daily-mean top-of-atmosphere insolation as a function of latitude for the Austral
summer solstice (21 December), the Austral winter solstice (21 June), and the annual mean.

further discuss some of the techniques used for such state estimation, including those used
in modern reanalyses.

1.2.1 Solar insolation forcing

We begin by considering the ultimate driver of the general circulation, the input of energy
from the sun. As we shall see in later chapters, the fundamental reason for the existence
of any large-scale circulation in Earth’s atmosphere is the uneven distribution of solar
radiation impinging on the Earth at different latitudes. Figure 1.1 shows this latitudinal
variation for different times of year. Plotted is what is known as the insolation–the total
energy impinging on a given area of the Earth’s surface per unit time–at each latitude,
measured at the top of the atmosphere (TOA) and averaged over a day. In the annual
mean, the TOA insolation peaks at the equator, decreasing monotonically to the pole. This
is because at high latitudes, the angle of the sun in the sky tends to be low, spreading out
the incoming rays over a larger area of Earth’s surface.

At the Solstices, however, the maximum daily-mean insolation occurs at the summer pole.
At this time of year, latitudes poleward of the Antarctic/Arctic circle are either in perpetual
daylight or perpetual night, depending on the season. The effect of having 24 hours of
continuous sunlight overwhelms the effect of solar zenith angle, allowing the summer pole to
receive more radiation than any other point on the Earth’s surface. Given this distribution
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Figure 1.2: Daily-mean top-of-atmosphere insolation as a function of latitude and time of year
in units of Watts per metre squared. Thick line shows the zero contour; regions poleward of this
contour are experiencing the polar night.

of insolation, one might ask why the warmest place on Earth on the 21 of December is not
the South Pole. More generally, we might ask the question: what sets the position and
seasonal migration of the maximum surface temperature on the Earth?

The seasonal cycle of solar insolation is shown in more detail in Fig. 1.2. It is clear
from this figure that the strongest meridional gradient in the TOA insolation occurs in
the winter hemisphere. Does this also imply that the winter hemisphere has stronger
meridional temperature gradients? How does this affect the general circulation and its
seasonal cycle?

It may also be seen in both Fig. 1.1 and Fig. 1.2 that the maximum daily-mean insolation is
higher at the Austral summer solstice than at the Boreal summer solstice. This is a result
of the Earth’s elliptical orbit around the sun; at present, the Earth reaches its closest
approach to the sun (perihelion) around the 4th of January, close to the summer solstice
in the southern hemisphere. This means that, from the point of view of the incoming
insolation, the Southern hemisphere has more intense summers, but also shorter summers,
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Figure 1.3: Zonal- and time-mean surface air temperature for January (red), July (blue), and the
annual mean (black) calculated based on the CRUTEM4 gridded dataset for the years 1961-1990.

since a planet moves fastest around its orbit when it is closest to its star according to
Kepler’s Laws.

The timing of perihelion relative to the solstices is not fixed, but rather it varies as part
of Earth’s precessional cycle with a period of roughly 25 thousand years. This precession
of Earth’s orbit is known to exert an influence on the climate. In the mid-Holocene period
(roughly 6000 years ago), perihelion occurred during the Northern Hemisphere summer,
resulting in stronger Northern Hemisphere monsoons, and contributing to the “greening
of the Sahara” in which the region that is now the Sahara desert was able to support
vegetation such as is found in tropical savannahs.

The precessional cycle, in combination with similar cycles in the eccentricity and obliq-
uity (tilt of Earth’s rotation axis relative to the orbital plane) of Earth’s orbit are col-
lectively known as Milankovitch Cycles after the Serbian mathematician who first studied
them. These cycles are known to be important in determining the timing of the periodic
glacial episodes that have characterised Earth’s climate variability for the past two million
years.

1.2.2 Thermal structure of the atmosphere

Near-surface temperature

We next consider the observed thermal structure of the atmosphere. Figure 1.3 shows the
time-mean surface air temperature, averaged around latitude circles (what is known as a
zonal mean) according to the CRUTEM4 dataset developed by the Climate Research Unit
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Figure 1.4: Seasonal range in surface air temperature, taken as the difference between the max-
imum and minimum monthly mean calculated based on the CRUTEM4 gridded dataset for the
years 1961-1990.

at the University of East Anglia (Osborn and Jones, 2014). Unlike the solar insolation,
the peak in the zonal-mean temperature remains relatively close to the equator throughout
the year. Also unlike the solar insolation, northern hemisphere summer temperatures are
higher than those at equivalent southern latitudes in the Austral summer. Nevertheless,
the seasonal variation in temperature is clearly largest in polar regions, where the seasonal
variation in insolation is also largest, suggesting that the insolation does play a major role
in determining the observed temperature distribution.

A clue as to the reason why temperatures do not simply follow the pattern of insolation
may be found in Fig. 1.4. The seasonal range of surface air temperature varies strongly
across the Earth’s surface. In addition to a general increase in seasonal range with latitude,
consistent with the distribution of solar insolation, there is a strong land-ocean contrast
in this quantity. The further one is away from the ocean, the larger the seasonal range in
temperature. The reason for this is primarily the difference in the thermal heat capacity
of the land compared to the ocean. In oceanic regions, a change in surface temperature
on seasonal timescales must be accompanied by a change in the temperature of a large
portion of the ocean mixed layer, which has a depth of tens of metres. In continental
regions, seasonal temperature changes occur in the upper few centimetres of the soil layer.
The amount of heat required to warm the air near the surface is therefore much greater
in oceanic regions than over a continent. This allows continental regions to respond much
more quickly to the seasonal variation in solar insolation and to undergo much wider swings
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Figure 1.5: Annual- and zonal-mean (a) temperature, (b) potential temperature, (c) equivalent
potential temperature, and (d) saturation equivalent potential temperature as a function of latitude
and pressure according to the NCEP-DOE reanalysis for the years 1981-2010. Potential temper-
atures calculated based on the time and zonal-mean pressure, temperature, and (for equivalent
potential temperature) relative humidity and neglecting ice processes.

in temperature on seasonal (and diurnal) timescales.

The finite timescale on which surface air temperature responds to changes in heating rates
partially accounts for the observed differences between the distribution of solar insolation
and the observed distribution of surface air temperature. Other effects include different
albedos in different regions that affect the amount of solar insolation that is actually ab-
sorbed by the Earth and atmosphere, and the effect of the atmospheric circulation, which
acts to spread the influence of oceanic regions to land regions and vice versa.

Vertical structure

It is well known that the temperature of the atmosphere typically decreases with height up
to the tropopause and increases above. But what sets the lapse rate in the troposphere?
And what sets the height of the tropopause?

Figure 1.5 shows the zonal- and time-mean thermal structure of the atmosphere estimated
from the NCEP-DOE reanalysis using four different variables: the temperature, potential
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Figure 1.6: Time- and zonal-mean temperature (contours; K) and zonal-wind (colours) for January
(left) and July (right) as a function of latitude and pressure according to the NCEP-DOE reanalysis
for the years 1981-2010.

temperature, equivalent potential temperature, and saturation equivalent potential tem-
perature1. As expected, temperature decreases with height within the troposphere and,
as required by gravitational stability, potential temperature increases with height at all
latitudes.

The distributions of the equivalent potential temperatures are more interesting: in the
tropical regions, the equivalent potential temperature θe tends to have a local minimum
in the mid troposphere, while the saturation equivalent potential temperature θ∗e is almost
constant with both height and latitude, at least within the free troposphere. Can we
understand why the atmosphere maintains a state of roughly constant saturation equivalent
potential temperature in tropical regions? Conversely, what is different about extratropical
regions that causes θ∗e to increase with height? More generally, what controls the thermal
stratification of the atmosphere? Despite their apparent simplicity, these questions are
still the subject of active research. We will discuss how the tropical atmospheric thermal
structure is maintained in chapter 3.

1.2.3 The mean circulation

A large component of the study of the general circulation of the atmosphere is devoted to
understanding how the zonal- and time-mean circulation is maintained. In this section we
present an overview of the mean circulation in Earth’s atmopshere.

Figure 1.6 shows the zonal winds as a function of latitude and pressure for January and July.
The main features of the plot are the strong westerly jets in the subtropical to midlatitude

1Readers unfamiliar with these variables can find a lucid description in ch. 4 of Emanuel (1994) or a
slightly simpler treatment in ch. 3 of Wallace and Hobbs (2006).
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Figure 1.7: Time- and zonal-mean zonal wind at 10 m above the ground according to the NCEP-
DOE reanalysis for the years 1981-2010. Red shading represents westerly winds and blue shading
represents easterly winds.

regions of each hemisphere and the weak easterlies existing in the tropical region in between.
There is typically one jet in each hemisphere, although evidence of a double jet structure
exists in the Austral winter, and the jets are strongest in the winter season. What is the
cause of these jets in the upper atmosphere? The temperature contours plotted in Fig. 1.6
demonstrate that the strongest upper tropospheric winds coincide with regions of strong
horizontal temperature gradients. Indeed, readers familiar with the thermal wind relation
(see chapter 3) will recognise that, for an atmosphere close to a state of geostrophic and
hydrostatic balance, the vertical increase in the zonal wind is proportional to the rate of
increase of temperature toward the equator. On Earth, where solar insolation is highest
at the equator (in the annual mean), this implies westerly winds in the upper atmosphere.
Furthermore, in winter, where the solar insolation gradient is highest, the temperature
gradient is also largest, and the westerlies are strongest.

The argument above accounts for some aspects of the observed westerly jets based on
the radiative forcing alone. But does this simple balance argument provide a complete
explanation of the wind distribution? For example, Fig. 1.7 shows the time- and zonal-
mean zonal wind distribution at 10 m above the Earth’s surface (as estimated by the
NCEP-DOE reanalysis). There is a clear pattern of westerly winds at midlatitudes and
easterly winds in tropical regions. Since the thermal wind relation relates the vertical
gradient of the wind to the temperature distribution, it cannot be used to reason about
the winds at the atmosphere’s lower boundary. What drives the pattern of westerly and
easterly surface winds on the Earth?

Another gap in our argument is that the thermal wind relation relates upper-tropospheric
westerly jets to tropospheric temperature gradients, but it doesn’t explain why those tem-
perature gradients should be localised in the extratropics. This point can be made partic-
ularly clearly by considering the winds not in their time- and zonal-mean, but in a daily
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Figure 1.8: Daily-mean winds at the 200 hPa level on the 8th of June, 2008 according to the
NCEP-DOE reanalysis. The direction and speed of the winds are shown by wind barbs in units of
m s−1, with regions of strong winds highlighted by colours.

snapshot. Fig. 1.8 shows the daily-mean horizontal winds at the 200 hPa level over the
southern hemisphere for a single day in the Austral winter of 2008. The figure shows that,
on daily timescales, jets in the atmosphere are not broad features occupying tens of degrees
of latitude, but relatively narrow and sharply defined regions of intense winds that vary
with both latitude and longitude. In the particular snapshot shown, evidence can also be
seen of multiple jet, with a set of wind maxima at roughly 30◦S (the subtropical jet) as
well as further poleward around 50◦S (the subpolar jet).

By thermal wind balance, these sharp localised jets must be related to localised temperature
gradients in the troposphere. But why should such temperature gradients form given the
relatively smooth distribution of solar insolation? And what determines the number of
jets/regions of strong temperature gradients? Clearly there are dynamical process that
favour the formation of jets and their associated sharp temperature gradients. In chapter 6,
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Figure 1.9: The meridional overturning streamfunction (see section 2.1.6) calculated based on
NCEP-DOE reanalysis data for the years 1981-2010 and for (a) the annual mean, (b) January, and
(c) July. Solid lines represent clockwise motion and dashed lines represent anticlockwise motion
and the contour interval is 2× 109 kg s−1.

we will discuss some of the mechanisms that lead to jet formation in the atmosphere.

As mentioned above, the meridional overturning circulation in Earth’s atmosphere consists
of three cells in each hemisphere–the Hadley, Ferrel, and Polar cells. Figure 1.9 visualises
these cells using the meridional overturning streamfunction Ψ. Contours of Ψ are parallel
to the direction of the zonal-mean flow in the latitude-height plane, and the density of Ψ-
contours represents the size of the mass flux within the circulation (see also section 2.1.6).
Of note is that the Hadley cells dominate the meridional overturning, particularly in the
solsticial seasons, while the polar cell is barely visible at the contour interval used. In the
solsticial seasons, the winter Hadley Cell expands and increases dramatically in strength,
while the summer Hadley cell weakens to be even weaker than the winter Ferrel cell. This
seasonal rearrangement of the tropical circulation is the zonal-mean expression of Earth’s
monsoons.

In all seasons, the Hadley cells in Earth’s atmosphere are confined to the tropical regions,
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Figure 1.10: Kinetic energy as a function of latitude and pressure according to the NCEP-DOE
reanalysis. (a) Total kinetic energy, and kinetic energy broken into (b) zonal- and time-mean
component, (c) transient eddy component, and (d) stationary eddy component. Contour interval
is 50 m2 s−2 except in panel (d) in which it is 10 m2 s−2.

generally not extending beyond 30◦ north or south of the equator. In contrast, the Hadley
cells on Mars, as well as the Saturnian moon Titan, extend almost from pole to pole. What
sets the latitude at which the Hadley Cell terminates, and how might this change under a
warmer climate? Moreover, the Ferrel cell that exists at midlatitudes is thermally indirect;
it lifts cool subpolar air upwards and pushes warm subtropical air downwards. How is
such a circulation maintained, and why is it necessary? These questions are considered in
chapters 5 & 6.

1.2.4 Eddies

So far we have considered the atmosphere primarily from a time-mean and zonal-mean
perspective. But variations from the mean are obviously important for day-to-day weather,
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and we shall see that they are important for the general circulation through their transport
of energy, water and momentum. In these notes, we will refer collectively to variations from
the time and zonal mean as eddies. This is irrespective of wether these variations take the
traditional form of eddies or if they are more wave-like. Furthermore, we will distinguish
between two types of eddies; transient eddies that vary with time, and stationary eddies,
that vary zonally, but not in time. This definition will be made more mathematically
precise in chapter 2.

Figure 1.10 shows an example of the above decomposition for the kinetic energy 1
2 |u|

2,
where u is the vector velocity. Panel (a) shows the total kinetic energy calculated by
averaging the square of the velocity, while panels (b-d) show the contribution of the zonal-
and time-mean wind, the transient eddies, and the stationary eddies, respectively. While
the mean flow accounts for a substantial fraction of the kinetic energy in the vicinity of
the jet, a considerable fraction of the kinetic energy in the atmosphere is associated with
transient eddies, particularly at the flanks of the jet. We will see in later chapters that
these eddies effect important transports of energy and momentum that cannot be ignored
in any complete account of the general circulation.

Stationary eddies are relatively weak in Fig. 1.10, suggesting that their importance for the
general circulation is limited. However, it should be noted that the decomposition of the
eddy field into stationary and transient components depends somewhat on the definitions
used. For example, in Fig 1.10, we have taken the time mean as an annual mean, so all
deviations from this annual mean count as transient eddies. If, instead, the time mean was
taken for a given month of the year, then zonally asymmetric seasonal variations (such as
the monsoons) would be included in the stationary eddy component, and the stationary
eddy contribution to the kinetic energy would be considerably higher.

The division of circulation statistics into a mean and eddy component is a powerful tool for
analysing the general circulation. It amounts to an application of Reynold’s decomposition,
as may be familiar to readers who have studied turbulence. We discuss this technique in
more detail in chapter 2.

1.2.5 The hydrological cycle

Finally, we turn to the observed hydrological cycle. Water enters the atmosphere through
evaporation from the surface, and leaves it through precipitation. Both these processes are
strongly influenced by the atmospheric circulation, with evaporation depending on the low-
level windspeed and thermodynamic properties of the air, and precipitation being strongly
associated with upward motion within the atmosphere.

The imprint of the general circulation on the hydrological cycle may be seen at a glance
by examining estimates of the observed precipitation distribution in Fig. 1.11. High
precipitation rates are concentrated in the intertropical convergence zone over the oceans
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Figure 1.11: Time-mean precipitation rate for (left) January and (right) July calculated based
on the CMAP gridded dataset (Xie and Arkin, 1997) for the years 1981-2010 .

and in monsoon regions over tropical continents. These regions correspond to the rising
branches of the atmospheric circulation, which, in the zonal mean, corresponds to the
Hadley circulation.

At midlatitudes, high precipitation rates are concentrated in the storm tracks, regions
where midlatitude weather systems are most often found. These are prominent in the
western side of the north Pacific and Atlantic oceans, as well as in the Southern Ocean.
Unlike in the tropics, the zonal-mean overturning circulation provides a poor indicator
of the regions of strong precipitation. This is because of the importance of eddies and
the positive-definite nature of precipitation; transient eddies produce both upward and
downward motion in the atmosphere, but while upward motion is associated with precip-
itation, downward motion does not correspond to negative precipitation. As a result, an
eddy that produces no zonal-mean ascent can nevertheless produce substantial zonal-mean
precipitation.

1.2.6 Summary

The preceding discussion presented an overview of some of the main features of the general
circulation of Earth’s atmosphere and motivated a number of questions about the general
circulation and the processes that maintain it. In this set of notes we will only address a
subset of these questions, and we will not necessarily provide full answers to those that are
addressed. This is both to keep the scope of these notes manageable, but also because not
all the answers are fully known. Questions as simple as “what sets the thermal stratification
of the atmosphere?” are still actively researched to this day.
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The purpose of these notes are therefore to provide the reader with the tools, and hopefully
the inspiration, to engage with research on the large-scale atmospheric circulation.

1.3 Further reading

Like any set of teaching materials, these course notes draw heavily from other texts and the
literature. In particular, the following resources have been particularly influential in the
development of the general circulation of the atmosphere unit at Monash University.

1. Vallis, G. K., 2017: Atmospheric and oceanic fluid dynamics: fundamentals and large-
scale circulation. 2nd ed., Cambridge University Press, 946 pp.

This book provides an up-to-date and comprehensive treatise on large-scale atmo-
spheric dynamics, from the derivation of the governing equations to the general cir-
culation. Almost every topic covered in these notes are covered in more detail within
this book, I cannot recommend it highly enough. Chapters 14, 15 and 18 are partic-
ularly relevant.

2. Stone, P., 2005: General circulation of the Earth’s atmosphere. MIT Open Course-
ware, Woods Hole Oceanographic Institution, URL https://ocw.mit.edu/courses/
earth-atmospheric-and-planetary-sciences/12-812-general-circulation-of-

the-earths-atmosphere-fall-2005/.

Lecture notes from a course on the general circulation of the atmosphere at the
Massachusetts Institute of Technology, originally taught by Peter Stone. Provides an
overview of the atmospheric budgets of angular momentum, energy, water vapour,
and also includes a section on the entropy budget of the atmosphere.

3. Held, I. M., 2000: The general circulation of the atmosphere. Proc. Geophysical Fluid
Dynamics Program, Woods Hole Oceanographic Institution, 1–54, URL https://

www.whoi.edu/fileserver.do?id=21464&pt=10&p=17332.

Notes from a beautiful set of lectures given by Isaac Held at the Woods Hole Oceao-
graphic Institution’s summer school in the year 2000. Perhaps a bit dated now, but
well worth a read. Chapters 6 and 7 of the current notes are highly influenced by
these lectures.

4. Peixoto, J. P. and A. H. Oort, 1992: Physics of Climate. AIP Press, 520 pp.

One of the first attempts to produce a coherent estimate of the general circulation
from observations. Discusses the main budgets of the atmosphere and shows estimates
of the terms within them. While modern reanalysis techniques are considerably more
sophisticated, the simplicity of the Piexoto-Oort method is useful for its transparency

https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-812-general-circulation-of-the-earths-atmosphere-fall-2005/
https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-812-general-circulation-of-the-earths-atmosphere-fall-2005/
https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-812-general-circulation-of-the-earths-atmosphere-fall-2005/
https://www.whoi.edu/fileserver.do?id=21464&pt=10&p=17332
https://www.whoi.edu/fileserver.do?id=21464&pt=10&p=17332
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and the insight it provides to the process of state estimation. This method is described
in chapter 2 of these notes.

For those students that lack a solid background in dynamical meteorology, the following
book provides a concise introduction to atmospheric dynamics that may be of use:

• Vallis, G. K., 2019: Essentials of Atmospheric and Oceanic Dynamics. Cambridge
University Press, 366 pp.

For those students with a strong background in fluid dynamics, but a lack of specific mete-
orological knowledge, the following texts provide an introduction to many of the important
concepts of atmospheric science and climate science

• Hartmann, D. L., 1994: Global physical climatology. Academic Press, 411 pp.

• Wallace, J. and P. Hobbs, 2006: Atmospheric science: an introductory survey. 2d ed.,
Academic Press.

Finally, these notes assume a reasonable familiarity with atmospheric thermodynamics,
including the various conserved variables used within the atmospheric sciences. A ba-
sic treatment is provided by Wallace and Hobbs (2006) given above. A more advanced
treatment is given in

• Emanuel, K. A., 1994: Atmospheric convection. Oxford University Press, 580 pp.
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Chapter 2

Analysing the general
circulation

This chapter presents a short introduction to the governing equations of the atmosphere
that will be used to analyse the general circulation. I assume that students have been
exposed to these equations before, and so the derivations contained here are not complete
and not rigorous. For a more complete treatment of the equations for large-scale flow within
the atmosphere, the reader is invited to consult chapters 1 and 2 of Vallis (2017).

2.1 Governing equations

2.1.1 A statement of the problem

The state of the atmosphere at a given time may be wholly described by the specification
of six key variables:

• three components of the vector velocity u = (u, v, w)

• pressure p

• temperature T

• density ρ

In addition, the humidity in the atmopshere (and salinity in the ocean) are often dynami-
cally important. An extra equation is usually required to track the concentration of these
trace species. We therefore require six equations (plus one for humidity) and an appro-
priate set of boundary conditions to solve for the evolution of the fluid. These equations
are:

19
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• mass continuity (conservation of mass)

• Newton’s second law applied to the fluid (conservation of momentum; 3 equations)

• the first law of thermodynamics (conservation of total energy)

• an equation of state (functional relationship between pressure, density and tempera-
ture)

In the next section, we sketch out heuristic derivations of these equations. For a more
complete treatment, the reader is referred to sections 1.1-1.5 of Vallis (2017). For a fun-
damental derivation of the equations from Hamilton’s principle, see the excellent lecture
notes on geophysical fluid dynamics by Salmon (1998).

2.1.2 Conservation of mass

The equation of conservation of mass expresses the physical principle that mass cannot be
created or destroyed. Consider a control volume, fixed in space, denoted by V0. Conserva-
tion of mass requires that the net rate of change of the mass within the control volume must
be equal to the flux of mass across its boundaries. Mathematically we may write,

d

dt

∮
V0

ρdV = −
∮
∂V0

ρu · n̂ dS, (2.1)

where ρ is the fluid density, u is the vector fluid velocity, ∂V0 represents the boundary of V0,
and n̂ is an outward unit normal. The left-hand side represents the change in mass within
the control volume, and the right-hand side represents the flux of mass into the control
volume. Since the volume is fixed, we can take the time derivative inside the integral as
a partial derivative. Additionally applying the divergence theorem to the right-hand side
gives, ∮

V0

∂ρ

∂t
dV = −

∮
V0

∇ · (ρu) dV , (2.2)

Since (2.2) is valid for an arbitrary control volume, it can only be satisfied if the integrand
is identically zero. Hence we may write a differential equation for mass continuity given
by,

∂ρ

∂t
+∇ · (ρu) = 0. (2.3)

The material parcel

It will prove useful to consider in addition to a control volume fixed in space, a volume that
moves with the fluid, known as a material parcel, which we denote Vt. The material parcel
can be thought of as a mass of fluid made up of fluid elements that have been tagged
so that the volume enclosed by the parcel “follows the flow”. In particular, this means
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that the velocity of the boundary of the parcel ∂Vt is equal to the fluid velocity at each
point. Furthermore, by definition, the mass of a material parcel cannot change1, so we
have that,

d

dt

∮
Vt

ρ dV = 0. (2.4)

The material parcel viewpoint corresponds to a Lagrangian perspective on the flow, while
the control volume approach takes an Eulerian perspective. To convert between the ma-
terial parcel view and the control volume view, we therefore need to convert from an
Eulerian to a Lagrangian perspective. To do so, consider the following coordinate trans-
formation.

We define the traditional Eulerian coordinates x = (x, y, z) as fixed in an inertial reference
frame. We then define the Lagrangian coordinates x0 = (x0, y0, z0) which refer to the
position of a fluid element at some time t = 0. As the fluid evolves, the Eulerian coordinates
of each fluid element (x, y, z) may change, while the Lagrangian coordinates, (x0, y0, z0)
remain unchanged. On the other hand, at a fixed location, (x, y, z) are unchanging, but the
coordinates (x0, y0, z0) vary as fluid elements with different starting locations pass through
that particular location.

Now, by definition, the velocity of a given fluid element is given by,

u =
∂x

∂t

∣∣∣∣
x0

, (2.5)

where the partial derivative is taken at constant values of the Lagrangian coordinate.
Furthermore, we may use the chain rule to relate the Lagrangian and Eulerian time deriva-
tives. Consider a scalar variable which may be expressed in either coordinate system:
γ = γ(x, y, z, t) = γ(x0, y0, z0, t). Taking the Lagrangian time derivative, we have,

∂γ

∂t

∣∣∣∣
x0

=
∂γ

∂x

∂x

∂t

∣∣∣∣
x0

+
∂γ

∂y

∂y

∂t

∣∣∣∣
x0

+
∂γ

∂z

∂z

∂t

∣∣∣∣
x0

+
∂γ

∂t

∣∣∣∣
x

∂t

∂t

= u · ∇γ +
∂γ

∂t

∣∣∣∣
x

where partial derivatives with respect to an Eulerian coordinate (x, y, z) are taken while
holding other Eulerian coordinates constant.

Since equations are typically defined in Eulerian coordinates, we denote the expression
above for the Lagrangian derivative a special operator,

D

Dt
=

∂

∂t
+ u · ∇, (2.6)

1This is not strictly true if molecular diffusion is considered, since mass transport by diffusion is separate
from the mass transport by the velocity u. See Salmon (1998) for a detailed discussion of this separation
between organised fluid motions that make up u and the random motions that make up molecular diffusion.
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and henceforth we assume all partial derivatives are taken with Eulerian coordinates held
constant.

Using (2.6), the equation for mass continuity (2.7) may be rearranged in terms of the
Lagrangian derivative to give an evolution equation for density,

Dρ

Dt
= −ρ∇ · u. (2.7)

2.1.3 Conservation of momentum

To derive the equation for conservation of momentum in the atmosphere, we apply Newton’s
second law to a material parcel of fluid,

d

dt

∮
Vt

ρu dV =
∑
i

Fi, (2.8)

where the integral on the left-hand side represents the momentum of a material fluid parcel,
and the right hand side represents the sum of the forces on that fluid parcel Fi.

To evaluate the right-hand side we need to tally the forces acting on the fluid. In general,
the forces acting on the fluid may be body forces, which act on all elements of the fluid and
result from an externally imposed potential, or surface forces, which act at the interface
between the parcel under consideration and its environment and arise from the interaction
of the fluid internally or with rigid boundaries. A full account of how the various surface
and body forces arise is beyond the scope of these notes, and we present only a sketch here
(see Salmon, 1998).

The main forces of relevance to geophysical fluids are:

• gravitational force (body)

• pressure force (surface)

• viscous stresses (surface)

Consider first the gravitational force Fg acting on a material parcel. As a body force, the
gravitational force acts at every point within the fluid. We can express the force per unit
mass at each point in terms of a gravitational potential Φg, so that the force acting on the
entire parcel may be written,

Fg = −
∮
Vt

ρ∇Φg dV . (2.9)

In principle, the gravitational potential is calculated by integrating the potential from all
objects in the universe, including the atmosphere itself, based on Newton’s law’s of universal
gravitation. However, for geophysical fluids, the gravitational potential of the Earth is the
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only significant contributor. We will return to the precise form of the gravitational potential
for terrestrial problems below.

Now consider the pressure force acting on the same material parcel Fp. Pressure represents
a force per unit area exerted by the environment on the parcel that acts to compress the
parcel. This means that the pressure force acts normal to the parcel’s surface, and in the
opposite direction to the outward normal n̂ defined above. We may therefore write the
pressure force on the parcel as,

Fp = −
∮
∂Vt

pdS . (2.10)

Applying the divergence theorem, this may be written in a form similar to the gravitational
force,

Fp = −
∮
Vt

∇p dV . (2.11)

The pressure represents the normal stress exerted by the fluid parcel’s environment when
there is no relative motion between the parcel and its environment. Under conditions where
such motion is present, however, other stresses are produced, and these stresses need not be
in the direction of the unit normal. The most general representation of such stresses is the
viscous stress tensor P. P is a rank two tensor (cf. vectors, which are rank one tensors).
This means it can be described by specifying 9 components, three for each orthogonal
direction. The components Pij physically refer to a force in the ith direction acting on a
surface oriented in the jth direction. In particular, this means the viscous force on the
material parcel Fν may be written,

Fν = −
∮
∂Vt

n̂ · P dS, (2.12)

where the dot product reduces the rank-two tensor to a vector2. With the help of the
divergence theorem, this may be written as,

Fν = −
∮
Vt

∇ · P dV . (2.13)

Specifying the form of the viscous stress tensor is a difficult task. One approach is to
assume that P at a given point in space is a linear function of velocity gradients at that
point. Such a fluid is known as Newtonian. This approximation may be thought of as
a local Taylor approximation for the stress tensor, and it is typically a reasonably good
approximation for many applications in geophysical fluid dynamics3. Here, we will not

2For those familiar with index notation, the ith component of the term n̂ · P can be written
∑
j njPij .

3Notwithstanding the popular example of Oobleck, 1 part water to 1.5 parts corn starch. Google it.
You will not regret it.
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consider the stress tensor in detail, and generally we will only consider viscous forces in
the atmosphere from a qualitative point of view.

Substituting the expressions for the forces into (2.8), we have,

d

dt

∮
Vt

ρu dV =

∮
Vt

−ρ∇Φg −∇p+∇ · P dV . (2.14)

The remaining task is to move the time derivative into the integral on the left-hand side
such that the region of integration becomes arbitrary. However, this is not trivial, as
the integration region Vt is now a function of time. A way forward is to transform the
integral into a set of coordinates for which the integration region is fixed. What are such
coordinates? Precisely the Lagragian coordinate system we developed above. Making the
transformation (x, y, z, t)→ (x0, y0, z0, t), we may write,

d

dt

∮
Vt

ρu dV =
d

dt

∮
V0

ρuJ(x,x0) dV , (2.15)

where V0 is the volume of the parcel measured in the Lagragrian coordinate, and J is the
Jacobian relating volume elements in the (x, y, z) coordinate to those in the (x0, y0, z0)
coordinate. Since V0 is independent of time, the time derivative may be moved inside the
integral so that,

d

dt

∮
Vt

ρu dV =

∮
V0

Du

Dt
ρJ(x,x0) dV +

∮
V0

u
D

Dt
[ρJ(x,x0)] dV , (2.16)

where a time derivative at fixed x0 is denoted by D
Dt , and we have used the product rule

to split the integral into two terms.

The first term on the right-hand side of (2.16) may be simply transformed back into
Eulerian coordinates since the Jacobian is unaffected. To evaluate the second term on the
right-hand side, we transform the integral equation for conservation of mass of a material
parcel (2.4) into Lagrangian coordinates so that,

d

dt

∮
V0

ρJ(x,x0) dV = 0. (2.17)

Bringing the time derivative inside the integral as above, we have,∮
V0

D

Dt
[ρJ(x,x0)] dV = 0. (2.18)

Since the volume V0 is arbritrary, this implies D(ρJ)/Dt = 0, and therefore that the second
term on the right-hand side of (2.16) is also zero.
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Bringing this together, we have what is known as Reynolds transport theorem,

d

dt

∮
Vt

ρu dV =

∮
Vt

Du

Dt
ρdV . (2.19)

Substituting this into (2.14), we have,∮
Vt

ρ
Du

Dt
dV =

∮
Vt

−ρ∇Φg −∇p−∇ · P dV . (2.20)

Since the integration region Vt is arbritrary, this can only be satisfied if the integrand is
exactly zero, giving,

Du

Dt
= −∇Φg −

1

ρ
∇p+ fν , (2.21)

where we have denoted the viscous stress term by the viscous force per unit mass fν for
simplicity. Expressing the above equation in purely in an Eulerian frame, we have the
momentum equation for the atmosphere,

∂u

∂t
+ u · ∇u = −∇Φg −

1

ρ
∇p+ fν , (2.22)

Effects of rotation

In the atmosphere and ocean sciences, velocities are typically measured relative to the
Earth’s surface. It is therefore helpful to write the equations from this perspective. How-
ever, the rotating Earth is not an inertial reference frame, and there are therefore apparent
forces that appear in the equations when viewed in this frame. In particular, rotation gives
rise to two extra forces, the centrifugal force and the Coriolis force4.

We do not derive the form of these additional forces here; the reader is referred to e.g.,
Houghton (2002), section 7.2 or Vallis (2017), section 2.1 for derivations of the equations
of motion in a rotating frame. Here, we simply state that, when viewed from the rotating
frame of the Earth, the momentum equation contains two extra terms given by fcent =
−Ω × (Ω × x) and fcor = −2Ω × u relative to the equations in an intertial frame. The
equation of motion relative to the rotating planet may therefore be written,

∂u

∂t
+ u · ∇u = −∇Φg −Ω× (Ω× x)− 2Ω× u− 1

ρ
∇p+ fν , (2.23)

where all quantities are taken with respect to a coordinate system that rotates at angular
velocity Ω.

4Despite sometimes being called fictitious forces, the Coriolis and centrifugal forces have important
influences on the flow as we shall see throughout these notes. Indeed, gravity itself is a fictitious force when
viewed from Einstein’s theory of general relativity.
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Figure 2.1: Force balance for a stationary object on the surface of the Earth. For a spherical
planet (left), the combination of the gravitational force Fg, centrifugal force Fcent, and normal force
FN must result in a net force. If the planet bulges at the equator (right), the three forces can be
balanced, and an object stationary on the surface will remain stationary.

The term fcent = −Ω× (Ω×x) is the centrifugal force per unit mass. It acts on all objects
in the rotating frame, whether they are stationary or moving. It is directed away from the
Earth’s rotation axis, with a magnitude equal to Ω2r⊥, where Ω is the Earth’s rotation
rate, and r⊥ is the distance from the Earth’s axis.

The term fcor = −2Ω × u is the Coriolis force per unit mass. Since it depends on u,
it acts only on objects that are moving in the rotating frame. Furthermore, the Coriolis
force acts at right angles to the motion, so it does not affect the speed of motion, only its
direction.

The bulging of the Earth at the equator

Consider an object at rest on a flat surface on Earth. The forces exerted on this object
are the gravitational force, which acts towards the centre of the Earth, the normal force,
which acts normal to the surface, and the centrifugal force pointing away from the Earth’s
axis (Fig. 2.1). For a spherical Earth, the gravitational force and normal force would be
parallel, but, apart from at the Equator, the centrifugal force would have a component
parallel to the surface of the Earth (locally horizontal). Thus, regardless of the magnitudes
of the gravitational force and normal force, the net force could not be balanced. Why then
do objects on the surface of the Earth not spontaneously accelerate sideways?

The answer is that Earth is not a sphere, but bulges at the equator. This bulge is such that
the combined effect of the gravitational force and the centrifugal force are perpendicular to
what we think of as a “flat” surface (Fig. 2.1). At long enough timescales, the Earth may be
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considered a fluid, and it has therefore attained a mass distribution that is approximately
in equilibrium with its rotation. The net result is that what we consider as “down”, as
measured by a plumb bob for example, does not point to the centre of the Earth, but
points in the direction of the sum of the centrifugal and gravitational forces.

What does all this mean for the equations of motion? Since the gravitational and centrifugal
forces act together, it makes sense to combine them into a single entity. In particular, we
can define a potential for the centrifugal force so that,

fcent = −∇Φcent = −∇
(
−Ω2r2

⊥
2

)
. (2.24)

Defining a combined potential Φ = Φg + Φcent, we may write the equation of motion
as,

∂u

∂t
+ u · ∇u = −∇Φ + 2Ω× u− 1

ρ
∇p+ fν . (2.25)

The potential Φ increases as one moves away from the Earth’s oblate spheroidal surface,
consistent with what we usually think of as the gravitational potential. For this reason we
refer to Φ as the geopotential.

Spherical coordinates

So far, we have only considered the equations of motion in vector form. To be useful,
however, we must express the equations in a set of coordinates. For the Earth, it is
natural to use spherical coordinates, defined by λ the longitude, φ the latitude, and r the
distance from the centre of the planet, with corresponding unit vectors as shown in Fig.
2.2. However, as described above, the Earth is not a true sphere, so applying spherical
coordinates strictly would imply the existence of strong geopotential gradients on surfaces
of constant r, making the equations rather awkward to use.

A solution to this problem, and the solution that is almost universally used in atmospheric
science, is to make the approximation that the Earth, as well as surfaces of constant Φ, are
true spheres5. Under this approximation, the sum of the gravitational and centrifugal ac-
celeration −∇Φ is parallel to the r coordinate and so only appears in one of the component
equations, which considerably simplifies the algebra.

The primitive equations

Rather than derive the coordinate forms of the momentum equation here, we will simply
show an approximate form of these component equations known as the primitive equations.

5An alternative would be to define an oblate spheroidal coordinate system of latitude, longitude, and
a third coordinate with level sets that are oblate spheroids. I am not aware of any model, textbook or
research paper that does this for Earth, but it is potentially required for very rapidly rotating bodies (e.g.,
Pulsars).
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Figure 2.2: Spherical coordinate system commonly used in atmospheric science. The three coor-
dinates are longitude λ, latitude φ and distance from the centre of the planet r, with corresponding
unit vectors λ̂, φ̂, and r̂. Adapted from Vallis (2017).

The primitive equations are constructed upon three approximations:

1. The shallow fluid approximation: Neglect the increase in surface area of the at-
mosphere as r increases, and use the distance from mean-sea level z for the radial
coordinate (which we refer to as the vertical coordinate). This implies

z = r −Re

where Re is the radius of the Earth (which is a true sphere under our approximations),
and that the geopotential is given by Φ = gz, where g is the (assumed constant)
gravitational acceleration.

2. The traditional approximation: Neglect the components of the Coriolis force associ-
ated with vertical motion and neglect certain metric terms6 that contain the vertical
velocity.

3. Hydrostatic balance: assume the vertical momentum balance is between gravity and
the pressure gradient.

6Metric terms are those terms in the component equations that arise from the curvilinear nature of the
coordinate system. See Vallis (2017), section 2.2.3.
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The first two assumptions above must be taken together in order to ensure the resultant
equations retain a principle of conservation of angular momentum. Hydrostatic balance is
not strictly required, but it is a very good approximation for large-scale flow in Earth’s
atmopshere, and it often assumed in global climate models.

Given these approximations, the primitive equations for momentum may be written,

Du

Dt
= 2Ω sinφv +

uv

Re
tanφ− 1

Reρ cosφ

∂p

∂λ
+ Fνλ, (2.26a)

Dv

Dt
= −2Ω sinφu− u2

Re
tanφ− 1

Reρ

∂p

∂φ
+ Fνφ, (2.26b)

∂p

∂z
= −ρg. (2.26c)

Here u, v and w are the velocities in the zonal, meridional, and vertical directions, respec-
tively, and Fνλ and Fνφ are the frictional forces per unit mass in the zonal and meridional
directions, respectively. The terms involving tanφ are metric terms that arise from the
curvilinear coordinate system.

Some geometry leads to the following expressions for the velocities,

u = Re cosφ
Dλ

Dt
, (2.27)

v = Re
Dφ

Dt
, (2.28)

w =
Dz

Dt
. (2.29)

While the Lagrangian derivative may be expressed,

D

Dt
=

∂

∂t
+

u

Re cosφ

∂

∂λ
+

v

Re

∂

∂φ
+ w

∂

∂z
. (2.30)

Note also that, under the shallow fluid approximation, the divergence in spherical coordi-
nates may be written,

∇ · u =
1

Re cosφ

[
∂u

∂λ
+
∂v cosφ

∂φ

]
+
∂w

∂z
. (2.31)

2.1.4 Equation of state

The equation of state represents the relationship between the state variables of the fluid
under consideration. For the atmosphere, the relevant equation of state is the ideal gas
law, which in its most general form may be written,

p =
n

V
R∗T. (2.32)
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Here p is the pressure, T is the temperature, n is the number of moles of gas, V is the
volume of the gas, and R∗ = 8.314 J mol−1 K−1 is the universal gas constant. The ideal
gas law may be derived from the kinetic theory of gases by assuming that interactions
between individual gas molecules are weak (which is a good approximation at atmospheric
pressures and temperatures).

For a gas composed of a single constituent chemical, we have that the mass of gas m is
related to the number of moles by n = m/M , where M is the molar mass of the molecules
making up the gas. We may therefore write,

p = ρ
R∗

M
T, (2.33)

where we have noted that the density ρ = m/V . For a mixture of gases, we may use
Dalton’s law of partial pressures to derive an equation of state for the mixture,

p =
∑
i

pi = ρRmixT, (2.34)

where

Rmix =
∑
i

qi
R∗

Mi
. (2.35)

Here pi and Mi are, respectively, the partial pressure and molecular mass of consituent i
within the mixture, and qi is the mass of consituent i per unit mass of the mixture.

In the atmosphere, the water vapour concentration is highly variable, and it therefore
makes sense to consider the water vapour separately. In particular, we may write,

pd = ρdRdT (2.36)

e = ρvRvT, (2.37)

where pd and ρd are the pressure and dry air density, respectively, and e and ρv are the
vapour pressure and vapour density, respectively. The gas constants are calculated using
(2.35), and turn out to be Rd = 287 J kg−1 K−1 and Rv = 461.5 J kg−1 K−1. Combining
the above equations, we may write an equation of state for moist air given by,

p = ρRmT (2.38)

where Rm = (1− q)Rd + qRv and q = ρv
ρ is the specific humidity. Since q << 1 in Earth’s

atmosphere, an approximation that is suitable for large-scale flow is to simply neglect the
effect of water vapour on density so that we have,

p ≈ ρRdT. (2.39)

This approximation is sufficient for our purposes, but can become dubious in situations
where small-scale horizontal gradients of density are important (e.g., estimating the density
of clouds relative to their environment).
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2.1.5 The thermodynamic equation

The thermodynamic equation represents conservation of energy associated with the micro
scale motions of air molecules7. The thermodynamic equation for a parcel of air of unit
mass may be approximately written,

Di

Dt
= Q− pDα

Dt
, (2.40)

where Q is the diabatic heating rate, i is the internal energy of the air, and α = 1/ρ is the
specific volume. This equation expresses the physical principle that the internal energy of a
fluid parcel may be changed by external heat sources or by work done by the environment
on the parcel.

For an ideal gas, gas particles are assumed to interact only weakly with one another, and
the internal energy is therefore simply a mean of the kinetic energy of each individual
molecule. Since the temperature is a measure of the mean kinetic energy of molecules, this
means the internal energy i = i(T ) is a function of temperature only. Defining the specific
heat capacity at constant volume cv = di

dT , we have,

Q = cv
DT

Dt
+ p

Dα

Dt
. (2.41)

Note that the specific heat capacity cv may not be constant with temperature, but empir-
ically it is found that its variations with temperature are relatively weak, and it may be
approximated as such.

It is useful to use the ideal gas law to transform the thermodynamic equation into a more
convenient form. Taking the Lagrangian derivative of the ideal gas law pα = RdT with
respect to time, we have,

α
Dp

Dt
+ p

Dα

Dt
= Rd

DT

Dt
. (2.42)

Substituting this into the thermodynamic equation (2.41), we have

cp
DT

Dt
= Q− αDp

Dt
, (2.43)

where we have defined cp = cv +Rd to be the the isobaric specific heat capacity. This form
of the thermodynamic equation is useful because it contains the Lagrangian derivative of
pressure, which will be identified as the vertical velocity in pressure coordinates below.
Note, however, that the left-hand side of the thermodynamic equation in the form (2.43)

7cf. the energy equation for macro-scale motion that may be derived by dotting the momentum equation
with the velocity. These two energy equations interact through viscous dissipation, which converts macro-
scale energy to micro-scale energy. We will not discuss the details of this energy cascade in these notes.
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does not correspond to the internal energy, and the second term on the right-hand side
does not correspond to the work done.

Finally, we simplify the thermodynamic equation further by defining the potential temper-
ature θ so that

θ =
T

π(p)
(2.44)

where π(p) =
(
p
p0

)Rd
cp is the Exner function, and p0 is a reference pressure, generally

taken to be 1000 hPa. Taking the Lagrangian derivative of the above equation, we have
that,

Dθ

Dt
=

1

π(p)

DT

Dt
− RdT

cppπ(p)

Dp

Dt
(2.45)

Substituing this into the thermodynamic equation, using the ideal gas law and rearranging,
we have that,

Dθ

Dt
=

Q

cpπ(p)
. (2.46)

2.1.6 Useful approximations and transformations

Equations (2.7), (2.26), (2.39) and (2.43), along with equations for additional tracers of
interest (such as water substance) and specifications of appropriate boundary conditions
and diabatic heating Q provide a complete set of equations for determining the evolution of
the atmospheric flow. However, often for analysis a simpler set is more useful fo developing
understanding. In this section we outline some approximations and transformations of the
equations that will be used in these notes.

Pressure coordinates

A particularly useful form of the equations that we will use throughout these notes are those
expressed with pressure as the vertical coordinate. In particular, we make the coordinate
transformation (λ, φ, z, t)→ (λ′, φ′, p, t′), where λ = λ′, φ = φ′, t = t′, and p is the pressure
field. Note that this change of coordinates does not involve a change in the direction of
the basis vectors; for example, the definitions of u and v do not change. Rather, we take
each component equation and recast them using the new coordinates.

Using a similar procedure to that in section 2.1.2, we may derive an expression for the
Lagrangian derivative,

D

Dt
=

∂

∂t′
+

u

Re cosφ

∂

∂λ′
+

v

Re

∂

∂φ′
+ ω

∂

∂p
. (2.47)

where ω = Dp
Dt . This expression may be compared to (2.30).
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We also must transform derivatives at constant height into those at constant pressure. For
example, consider a variable γ. Applying the chain rule, we have,

∂γ

∂λ′
=
∂γ

∂λ

∂λ

∂λ′
+
∂γ

∂z

∂z

∂λ′
(2.48)

where partial derivatives with respect to primed coordinates hold all other primed coor-
dinates constant, and we have used the fact that the partial derivative of φ and t with
respect to λ′ is zero. Applying the above equation to the pressure itself, we have,

∂p

∂λ′
= 0 =

∂p

∂λ
+
∂p

∂z

∂z

∂λ′
. (2.49)

Applying hydrostatic balance, we have that,

∂p

∂λ
= ρ

∂Φ

∂λ′
. (2.50)

where Φ = gz is the geopotential. Substituting (2.50) and its equivalent for latitudinal
derivatives into (2.26) and rearranging the hydrostatic relation, we may write the momen-
tum equations in pressure-coordinates as,

Du

Dt
= 2Ω sinφv +

uv

Re
tanφ− 1

Re cosφ

∂Φ

∂λ
+ Fνλ, (2.51a)

Dv

Dt
= −2Ω sinφu− u2

Re
tanφ− 1

Re

∂Φ

∂φ
+ Fνφ, (2.51b)

∂Φ

∂p
= −α, (2.51c)

where we have dropped the primes for clarity.

Finally, we must transform the mass continuity equation into pressure coordinates. This
may be done directly using the mass continuity equation in height coordinates (2.7), but
it is more convenient, although somewhat more heuristic, to use physical reasoning di-
rectly.

Consider the mass of a Lagrangian parcel, which we may write in spherical coordinates,

M =

∮
Vt

ρ dV =

∫∫∫
ρR2

e cosφ dλ dφ dz (2.52)

where the R2
e cosφ factor is a result of the volume elements in spherical coordinates8. We

may transform the integral using hydrostatic balance, so that,

M =

∫∫∫
1

g
R2
e cosφ dλdφ dp (2.53)

8In full spherical coordinates, this factor would be r2 cosφ, but under the shallow fluid approximation,
we neglect the increase in the surface area of the atmosphere as one moves away from the surface.
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The above equation implies that the “density” in pressure coordinates is constant and equal
to the reciprocal of the gravitational acceleration. When viewed in pressure coordinates
(and under hydrostatic balance), the atmosphere therefore behaves as an incompressible
fluid. The relevant continuity equation for such a fluid is that the divergence of the velocity
is zero. This implies that the relevant continuity equation in pressure coordinates is,

∇p · uh +
∂ω

∂p
= 0. (2.54)

Where ∇p is the horizontal gradient operator at constant pressure, and uh is the horizontal
velocity vector.

Tangent-plane approximation

For many applications, it is sufficient to adopt a local cartesian coordinate system, rather
than retain the full complexity of spherical geometry. In particular, if we define the hori-
zontal coordinates,

x = Re cosφ0λ, (2.55)

y = Re(φ− φ0), (2.56)

for some reference latitude φ0, we recover the familiar cartesian equations (in pressure
coordinates),

Du

Dt
= fv − ∂Φ

∂x
+ Fνx, (2.57)

Dv

Dt
= −fu− ∂Φ

∂y
+ Fνy, (2.58)

where f = f0 = 2Ω sinφ0 (f -plane) or f = f0 + βy (β-plane). Here (u, v) are the velocities
in the (x, y) directions, and the Lagrangian derivative may be written,

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
. (2.59)

This approximation is reasonable when the region of interest is a limited range of latitudes,
but it can break down for problems that involve the circulation on planetary scales.

Definition of the streamfunction

We close this section with a short discussion of the streamfunction and its definition. We
define the streamfunction Ψ such that the difference between the value of the streamfunc-
tion at two height levels is equal to the total meridonal mass flux between those levels. In
particular,

Ψ(φ, z) = Re cosφ

∫ 2π

0

∫ z

0
ρv dz dλ, (2.60)
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where we have taken the streamfunction to be zero at the surface (z = 0). Since under the
hydrostatic approximation, dp = −ρg dz, we have,

Ψ(φ, p) =
1

g
Re cosφ

∫ 2π

0

∫ ps

p
v dp dλ, (2.61)

where ps is the surface pressure. Differentiating in pressure, we have,

∂Ψ

∂p
= −1

g
Re cosφ

∫ 2π

0
v dλ . (2.62)

Rearranging,

[v] = − g

2πRe cosφ

∂Ψ

∂p
, (2.63)

where [v] represents the zonal-mean meridional velocity (see the next section).

2.2 Decomposing the circulation

A large part of these notes are devoted to understanding the zonal- and time-mean atmo-
spheric circulation. In this section, we develop a few basic techniques for analysing the
time-and zonal-mean circulation and the deviations from this mean (the eddies), and how
these two components of the circulation interact. The notation and development of this
section follows that of Peixoto and Oort (1992).

2.2.1 Spatial and temporal averages

We define the time mean of a given variable a = a(λ, φ, p, t) as,

a =
1

τ

∫ τ

0
adt, (2.64)

where τ is a suitable temporal averaging period (e.g., 20 years for a climatological mean).
Furthermore, we denote the deviations of a from the time mean by a prime, so that,

a′ = a− a. (2.65)

Note that this definition guarantees that a′ = 0.

In a similar fashion, we define the zonal average,

[a] =
1

2π

∫ 2π

0
a dλ, (2.66)

and deviations
a∗ = [a]− a, (2.67)
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which similarly guarantees that [a∗] = 0.

The averaging operators have a few useful properties worth noting. Firstly, it is easily
shown that the averaging operators are linear, so that a+ b = a + b, and that ka = ka
for any scalar k. Secondly, the zonal and time averaging operators commute with each
other (since integration is commutative for sufficiently well behaved functions). Finally,
the zonal mean of a zonal derivative vanishes:[

∂a

∂λ

]
=

1

2π

∫ 2π

0

∂a

∂λ
dλ

=
1

2π
a|λ=2π
λ=0

= 0,

since the longitude 0 and 2π correspond to the same location. Furthermore, if we assume
that temporal trends are weak and the averaging period τ is long enough,

∂a

∂t
= 0.

The above properties are true provided the pressure or height level under consideration
does not intersect the surface. If, however, a given pressure surface outcrops, the integral
must be split into a series of integrals over all regions for which the level under question is
defined, and, for example, the zonal mean of a zonal derivative may be non zero. We shall
see this behaviour in our discussion of form drag in section 5.3.

The utility of the averaging operators arises when we consider the average of a product of
more than one field. For example, consider the produce of two fields a and b. Taking the
time mean, we have,

ab = (a+ a′)(b+ b′)

= ab+ ab′ + a′b+ a′b′ (2.68)

= ab+ a′b′.

The time-mean value of the quantity ab does not just have contributions from the time-
mean value of a and the time-mean value of b, but there is an additional contribution from
the covariance between a and b. Similarly we may write for the zonal mean,

[ab] = [a][b] + [a∗b∗]. (2.69)

Why is this important? Let’s consider a more physical example and study the evolution
of the specific humidity q. Absent precipitation or evaporation, the specific humidity is a
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conserved quantity. For simplicity, we neglect evaporation and precipitation here, and we
treat the specific humidity as a passive tracer with a governing equation of the form,

Dq

Dt
= 0. (2.70)

We may use continuity to write the above equation in a form more convenient for the present
analysis called flux form. Expanding the Lagrangian derivative in pressure coordinates and
using the tangent plane approximation for simplicity, we have,

Dq

Dt
=
∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
+ ω

∂q

∂p
(2.71)

By the product rule, we have that

∂uq

∂x
= u

∂q

∂x
+ q

∂u

∂x
(2.72)

Applying this to (2.71) above, we have

Dq

Dt
=
∂q

∂t
+
∂uq

∂x
+
∂vq

∂y
+
∂ωq

∂p
− q

(
∂u

∂x
+
∂v

∂y
+
∂ω

∂p

)
(2.73)

The last term in the above equation is zero by continuity, and we may therefore write the
flux form of the equation for q as

∂q

∂t
+∇p · (quh) +

∂qω

∂p
= 0. (2.74)

Any equation with a Lagrangian derivative can be transformed into flux form, either in
pressure coordinates or in height coordinates (in which case the resultant flux-form equa-
tion includes the density). We will often switch between the flux form and Lagrangian
form of equations rapidly, and so the reader is advised to become comfortable with this
transformation.

Now, let us use the flux form (2.75) to derive an equation for the evolution of the zonal-mean
specific humidity [q]. Taking the zonal average, we have,

∂[q]

∂t
+
∂[qv]

∂y
+
∂[qω]

∂p
= 0. (2.75)

Using (2.69) and rearranging, we have,

∂[q]

∂t
+
∂[q][v]

∂y
+
∂[q][ω]

∂p
= −∂[q∗v∗]

∂y
− ∂[q∗ω∗]

∂p
. (2.76)
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Finally, expanding the derivatives on the left-hand side using the product rule and using
the zonal-mean continuity equation,

∂[v]

∂y
+
∂[ω]

∂y
= 0,

we may write the equation for the zonal-mean specific humidity in Lagrangian form,

D[q]

Dt
= −∂[q∗v∗]

∂y
− ∂[q∗ω∗]

∂p
. (2.77)

Equation 2.77 is rather remarkable, as it states that the zonal-mean specific humidity
[q] is governed by the same equation as q itself but with additional forcing terms on the
right-hand side that depend on the deviations q∗. More specifically, these additional terms
represent the meridional and vertical eddy flux of q produced by correlations between the
specific humidity and the winds. These fluxes do not directly depend on the zonal-mean
flow; even if the zonal-mean flow [v] is zero, there may still be a non-zero meridional flux
of tracer through the term [v∗q∗]. This fact will be of central importance to our discussion
in later chapters.

2.2.2 Combining the spatial and temporal averaging operators

Often when studying the general circulation, we will be interested in the time- and zonal-
mean circulation. To deal with this, we need to combine the zonal and temporal averaging
operators. Consider again the product ab. Taking the time mean as in (2.68), and then
applying a zonal mean, we have,

[ab] = [ab] + [a′b′]. (2.78)

Applying the zonal decomposition to the first term, we have

[ab] = [a][b] + [a∗b
∗
] + [a′b′]. (2.79)

This three-term decomposition will turn out to be particularly useful for analysing the
general circulation.

Consider the decomposition applied to the meridional flux of specific humidity,

[vq] = [v][q] + [v∗q∗] + [v′q′]. (2.80)

This flux represents the mean transport of humidity across a given latitude circle at a given
level in the atmosphere. On the right-hand side, the first term represents the product of
the zonal- and time-mean meridional velocity with the mean humidity; this is the flux
due to the zonal-and time-mean circulation, which we will refer to as the mean flux. The
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second term represents the flux owing to motions that are steady in time, but correspond
to deviations from the zonal mean; this is the flux owing to stationary eddies. The third
term represents the flux owing to motions that vary in time, and it is therefore the flux
owing to transient eddies. This decomposition places a precise mathematical definition
on the concepts of ‘stationary eddies’ and ‘transient eddies’ as used in, for example, Fig.
1.10.

2.3 State estimation techniques

The analysis tools developed in the previous section assume we have enough information
to produce well-defined estimates of zonal averages [a] and time averages a and their devi-
ations. But observations of the atmosphere are usually scattered in space or time, and it
is not obvious that producing such estimates is possible. In this chapter, we briefly intro-
duce two methods for transforming direct observations of the atmosphere into a gridded
estimate of the time- and zonal-mean fields and their deviations.

2.3.1 The Peixoto-Oort method

Peixoto and Oort (1992) present estimates of the general circulation of the atmosphere,
include time- and zonal-mean fields and the mean and eddy fluxes of various quantities
based solely on radiosonde observations. Radiosondes are typically launched twice a day
at locations around the world by the Meteorologial agencies in various countries. Ra-
diosonde data is therefore relatively regular in time, but, because of the irregular spacing
of radiosonde launching sites, it is highly irregular in space.

The procedure of Peixoto and Oort (1992) proceeds in three steps.

Step 1: Prepare the station data

The raw radiosonde data is first quality controlled by removing obvious outliers. These
outliers are found by examining the distribution of a given variable observed by a given
radiosonde site over time. The quality controlled data is then used to calculate (monthly)
time means (e.g., v, T , vT , etc.). From these means, the time-averaged covariances (e.g.,
T ′2, v′T ′) may also be calculated, using, for example,

v′T ′ = vT − vT . (2.81)

Note that time-mean quantities are relatively easy to calculate because of the high time
resolution and relative regularity of the input radiosonde obsverations.
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Figure 2.3: Example of a spatial grid used in the Peixoto and Oort (1992) analysis. Radiosonde
stations are shown in red, class 1 gridpoints in black, class 2 gridpoints in grey, and class 3 gridpoints
in white. The analysis at class 3 points is found by solving a Poisson equation (2.82) over the shaded
region with boundary conditions taken from the surrounding class 2 points.

Step 2: Define the grid and initial guess

In the second step, a regular grid on which the atmospheric state is to be estimated is
defined. Peixoto and Oort (1992) use a 2.5◦×5◦ grid. This is considerably lower resolution
than many modern reanalyses, but it is sufficient from the point of view of the general
circulation.

An initial guess of the atmospheric state is then defined on this grid. Peixoto and Oort
(1992) use the climatological and zonal mean within 10◦ latitude bins as the initial guess.
This implies that in the initial guess [v∗T ∗] = 0, and similar for all stationary eddy com-
ponents.

Step 3: Update the initial guess using the observations

The initial guess is updated at each gridpoint using a set of rules based on the proximity of
the gridpoint to a radiosonde station. Specifically, three classes of gridpoints are defined.
Class 1 gridpoints are directly adjacent to a radiosonde site; class 2 gridpoints are adjacent
to a class 1 gridpoint; and all other gridpoint are denoted class 3 (Fig. 2.3). The rules for
each class are then,

Class 1: Use linear interpolation to calculate the required correction to the initial guess.

Class 2: Apply the same correction to the initial guess as for the nearest class 1 gridbox.

Class 3: For gridboxes far away from available radiosonde sites, solve the following
boundary value problem:

∇2T = F (λ, φ), (2.82)
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where the forcing function F is chosen to be the Laplacian of the initial guess,
and the boundary conditions correspond to the nearest gridboxes that have
had a correction applied.

Step 3 of the above procedure is repeated until a stable analysis is found. Once the time-
mean quantities have been estimated on the grid, zonal averages may be taken, and the
stationary eddy component may be estimate using, for example,

[v∗T ∗] = [vT ]− [v][T ]− [v′T ′]. (2.83)

It is useful to consider why the method above is superior to a simple interpolation proce-
dure. Consider an analysis of surface temperature which includes two adjacent gridpoints,
one at sea level and one in a coastal mountain range. The interpolation of surface temper-
ature across such a large difference in elevation is likely to be rather inaccurate. However,
if one knows something of the climatology of temperature at both locations, the anoma-
lies from this climatology are likely to be much better behaved when interpolated. The
Peixoto-Oort analysis applies the same reasoning over latitude rather than elevation. The
challenge is to optimally combine the information provided by the climatology at a given
location with the information provided by the weather at nearby locations.

2.3.2 Modern analysis

While the Peixoto-Oort analysis has the advantage of simplicity; it uses only radiosonde
observations and is relatively transparent in its treatment of the input data, modern anal-
ysis methods employ far more sophisticated techniques with a much wider range of data.
Such methods came about from the need to provide an initial state for numerical weather
prediction (operational analysis). However, there are also a number of “reanalysis” prod-
ucts available from different groups around the world which apply consistent methods to
estimate the state of the atmosphere at regular intervals over a number of decades which
are primarily used for research processes.

Data assimilation

The primary method of creating operational analyses and reanalyses is called data as-
similation. As in the Peixoto-Oort method, an initial guess of the atmospheric state is
required. In this case, the initial guess comes from the 6-hourly forecast of a numerical
weather prediction model. The initial guess is then corrected by minimising a cost function
that depends on the difference between the analysis and various observed fields, as well as
the size of the corrections that are required.

Data assimilation has the advantages that many different types of observations are able to
be used, and that the resultant analysis is based on a physical model of the system (which
respects the laws of physics). Nevertheless, such analyses typically do not satisfy budget
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constraints (e.g., water, momentum, mass). Furthermore, while, in the case of reanalyses,
the methodology (including the numerical model) used is fixed in time, the density and
type of observations vary. This can make identifying climatic trends in reanalysis rather
challenging. Finally, different reanalysis products are known to disagree on aspects of the
atmospheric circulation. This is not likely to be important for our purposes in this unit,
but it is important to keep in mind if you use reanalysis in your research.



Chapter 3

Radiative-convective equilibrium
& Hide’s theorem

3.1 Why is there an atmospheric circulation?

In this chapter we consider the most fundamental question possible about the atmospheric
circulation. Why does it exist? Sometimes it is said that the atmospheric circulation exists
because there is a net energy input into the equatorial latitudes and a net energy deficit
at polar latitudes. But this is incorrect. The existence of energy imbalances in the tropics
and polar latitude implies the existence of a circulation, but it cannot be used as a causal
mechanism any more than the existence of an atmospheric circulation can be thought of
as causing energy imbalances at different latitudes.

3.1.1 Radiative equilibrium

To determine the causes of the atmospheric circulation, it is helpful to imagine how the
atmosphere might look if such a circulation did not exist. In particular, if we consider the
case where all atmospheric motion ceases, the thermodynamic equation reduces to,

cp
∂T

∂t
= Qrad, (3.1)

where Qrad is the diabatic heating, which in the case of no motion can only occur via
radiation1. If we take a sufficiently long time average, the temperature tendency on the
left-hand side of (3.1) vanishes, and, expressing the radiative heating rate in terms of the

1In principle there would also be conduction from the surface to the atmosphere, and throughout the
atmosphere, but this is only efficient very close to the surface
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divergence of the radiative fluxes, we have,

∂

∂z
(F↑ − F↓) = 0, (3.2)

where F↑ and F↓ are the upward and downward radiative fluxes (both shortwave and long-
wave) through the atmosphere, respectively. This is the equation for radiative equilibrium.
Note that (3.2) depends only on the vertical coordinate, and so radiative equilibrium can
be solved for independently in each column of the atmosphere.

With a suitable radiative transfer code, one may solve (3.2) for the radiative-equilibrium
temperature profile by providing the solar radiation flux at the top of the atmosphere and
the distribution of radiatively active gases in the atmosphere, including water vapour and
clouds2. One of the first such calculations was performed by Manabe and Strickler (1964)
and is shown in the solid curve on Fig. 3.1.

By definition, in the radiative equilibrium state there is no net energy input or output at
the top of the atmosphere. If each column of the atmosphere was in radiative equilibrium,
the tropics and polar latitudes would each have a balanced heat budget locally, and there
would be no circulation. This clearly demonstrates that energy imbalances in the tropics
and polar latitudes are not the ultimate cause of the atmospheric circulation.

Why is Earth’s atmosphere out of radiative equilibrium? One reason can be seen by ex-
amining Fig. 3.1. The radiative-equilibrium temperature profile is broadly similar to the
observed temperature profile, decreasing in the troposphere and increasing in the strato-
sphere above (e.g., Fig. 1.5), but there are some important differences. In particular, the
radiative equilibrium is warmer at the surface and cooler at the tropopause than Earth’s
observed temperature profiles. As a result, the radiative-equilibrium lapse rate in the tro-
posphere is higher than in observations, particularly near the surface. In fact, one can show
that there is a substantial discontinuity in the radiative-equilibrium temperature profile in
which the surface is a few kelvin warmer than the atmosphere immediately above.

It may be shown that the radiative-equilibrium temperature shown in Fig. 3.1 is in fact
gravitationally/convectively unstable. If an air parcel in contact with the surface is per-
turbed upward, it experiences positive buoyancy and continues to rise. An initial state
in radiative equilibrium would therefore lead to convection, and the atmosphere would no
longer be stationary.

3.1.2 Radiative-convective equilibrium

We argued above that the atmosphere cannot remain in radiative equilibrium because this
state is gravitationally unstable to perturbations. But does this directly imply there should
be a large-scale circulation akin to the Hadley Cell? Gravitational instability refers to an

2Strictly speaking, if there were no atmospheric circulation there would be no clouds
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Figure 3.1: Thermal equilibrium profiles calculated using hemispherically averaged insolation and
assuming a vertical distribution of gaseous absorbers typical of 35◦N in April with no clouds. Solid
curve gives radiative equilibrium and dashed and dotted curves give equilibrium calculated with a
convective adjustment to the dry adiabatic lapse rate and a lapse rate of 6.5 K km−1, respectively.
From Manabe and Strickler (1964).

instability to vertical perturbations, and it may be removed by vertical rearrangements
of air parcels. We may therefore imagine a circumstance in which convection acts to
locally remove gravitational instability within each column while producing no “large-
scale” circulation. Such a state is known as radiative-convective equilibrium (RCE).

What does the RCE state look like? In RCE, there is a balance between the net radiative
cooling of the troposphere and net convective heating (both sensible and through latent heat
release in clouds) within each column. Since convective clouds develop over a timescale of a
few minutes, whereas the radiative relaxation timescale of the atmosphere is on the order of
weeks, we may think of convection as a “fast” process relative to radiation. We therefore
expect convection to rapidly remove instability produced by “slow” radiative processes,
implying that the the RCE state is one that is close to convective neutrality.

What is meant by convective neutrality? In an atmosphere with no latent heat release, con-
vective neutrality is a state in which the temperature follows a dry adiabat, and potential
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temperature is invariant with height. That is, we have that,

∂θ

∂z
= 0, (3.3)

where θ = T
(
p0
p

)Rd/cp
is the potential temperature, T is the temperature, p is the pressure

and p0 = 1000 hPa is a reference pressure. For reasons that will become clear in later
sections, it is useful to express convective neutrality conditions in terms of the entropy
rather than potential temperature. For a dry atmosphere, the entropy is defined sd =
cp ln θ, and convective neutrality is described by,

∂sd
∂z

= 0. (3.4)

While the entropy has some interesting properties relating to irreversible processes (see
Pauluis and Held, 2002), for our purposes, it is sufficient to treat it as a state variable
related to potential temperature.

In a convectively-neutral dry atmosphere, a parcel of air lifted adiabatically will remain
neutrally buoyant with respect to its environment and will feel no net force. Manabe and
Strickler (1964) found solutions for a dry RCE state using a simple “convective adjustment”
scheme. Under this approximation, convection is assumed to act wherever the atmosphere
becomes unstable to enforce a dry adiabatic lapse rate (Fig. 3.1). The dry-adiabatic RCE
solution avoids the problem of a surface discontinuity in temperature, but it still has a
substantially higher lapse rate than is observed in Earth’s tropics.

In a moist atmosphere, we expect the lapse rate in RCE to be smaller than that of a dry
adiabat because of the latent heat release within clouds. Manabe and Strickler (1964)
used convective adjustment to a lapse rate of 6.5 K km−1 to provide an approximate
solution to moist RCE (Fig. 3.1). More generally, we might think of an atmosphere that
is neutral to moist convection as one in which a parcel of air lifted from the boundary
layer remains neutrally buoyant as it rises through its lifted condensation level and into
the upper troposphere. This corresponds to a temperature that follows a dry adiabat up
to the LCL and a moist adiabat thereafter3. Mathematically, we express this state as one
in which

1. the saturation equivalent potential temperature θ∗e is constant vertically within the
free troposphere;

2. the free-tropospheric saturation equivalent potential temperature θ∗e is equal to the
actual equivalent potential temperature θe within the boundary layer.

3Singh and O’Gorman (2013) showed that, if entrainment is considered, the correct equilibrium profile
is actually slightly more unstable than a moist adiabat, but we will neglect this difference here.
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Equivalently, we may express the moist neutrality condition above using the moist entropy
s

s = cp ln θe ≈ cp ln(θ) +
Lvq

TLCL
, (3.5)

and the saturation moist entropy s∗

s∗ = cp ln θ∗e ≈ cp ln(θ) +
Lvq

∗

T
. (3.6)

Here, q is the specific humidity, Lv is the latent heat of vaporisation, and TLCL is the
temperature of an air parcel after it has been brought to saturation by adiabatic expansion
[see appendix D of Holton (2004) for a derivation, or Emanuel (1994) for a more detailed
treatment]. Note that the saturation moist entropy is a function of temperature and pres-
sure only; the two conditions above imply that the temperature profile of the atmosphere is
fully determined if one knows the boundary layer temperature and moisture content.

3.1.3 The tropical thermal structure

As we shall see below, Earth’s atmosphere is typically in a state far from RCE. Nevertheless,
the thermal structure within the tropics is well approximated by our RCE solution above,
particularly above the boundary layer.

Fig. 3.2 compares the mean temperature profile within tropical regions (20◦S-20◦N) to that
of a moist adiabat lifted from saturation from 850 hPa. The two curves differ by only 1-2 K
within the troposphere, indicating that constant s∗ is a rather good approximation to the
large-scale temperature structure of the tropical troposphere (see also Fig. 1.5). While Fig.
3.2 is based on reanalysis data, other studies have examined the tropical thermal structure
from radiosondes and found broadly similar results (Xu and Emanuel, 1989; Singh and
O’Gorman, 2013).

The close proximity of the tropical troposphere to a state in which s∗ is invariant with height
may be understood with the help of two conceptual models: convective quasi-equilibrium
(QE) and the weak temperature gradient (WTG) approximation. According to the QE
hypothesis, the effect of moist convection on the large-scale state of the atmosphere is
to rapidly relax the temperature profile to one that is moist neutral. As a result, in
regions of active deep convection, the atmosphere may be thought of as being in a series of
quasi steady states in which convective heating balances destabilisation by non-convective
processes (which includes radiation as well as large-scale dynamical uplift), and the same
arguments for moist neutrality used for RCE are applicable. We therefore expect that, in
convecting regions, the boundary-layer entropy s is roughly equal to saturation entropy s∗

within the free troposphere, and s∗ itself is roughly constant in the vertical.

The WTG approximation states that, because of the smallness of the Coriolis parameter
in tropical regions, temperature gradients in the free troposphere are rapidly removed by
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Figure 3.2: Mean temperature profile of the atmosphere for the tropical region (20◦S-20◦N) for
the years 1981-2010 according to the NCEP-DOE reanalysis (solid) and temperature of a pseu-
doadiabatic parcel ascent lifted from saturation at 850 hPa and initialised at the tropical mean
temperature (dashed). Shading represents the ±2σ range of monthly temperatures for all months
and all gridpoints in the tropical belt.

the action of gravity waves. As a result, the tropical atmosphere cannot maintain strong
temperature gradients within the free troposphere. This implies that the temperature
profile in non-convecting regions of the tropics is strongly constrained by the temperature
profile within convecting regions.

Combining QE with the WTG approximation implies that

1. the thermal strcuture in convecting regions is constrained by the QE hypothesis to
remain close to moist neutral.

2. by the WTG approximation, the temperature profile within convective regions is
communicated to non-convective regions of the tropics, and the entire tropical tropo-
sphere is maintained in a state where the saturation entropy s∗ is roughly constant.

Fig. 3.2 shows that these conclusions are well justified; not only is the mean tropical thermal
structure one in which s∗ is almost constant with height, the spatial and temporal variations
in temperature within the troposphere are on the order of a few kelvin, certainly much
smaller than the variations in mid-tropospheric temperature in midlatitude regions.

The preceding discussion has some far reaching consequences for the tropical precipitation
distribution. In particular, it suggests that regions of strong precipitation are characterised
by a value of boundary-layer entropy sb equal to the free tropospheric saturation entropy
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Figure 3.3: (bottom) Idealised distribution of the boundary-layer entropy (sb; grey) and saturation
entropy of the free troposphere (s∗t ; black) and (top) the associated distribution of convective clouds
according to the quasi-equilibrium view of tropical precipitation. Deep convection occurs at the
sb maximum, where sb ≈ s∗t . Shallower convection (e.g., congestus) occurs at a secondary, weaker
local maximum of sb.

s∗t , while in other regions sb is lower than s∗t , and the boundary layer is decoupled from the
free troposphere above (Fig. 3.3). This implies that the value of sb is a key determinant
of whether a region is able to support deep convection.

The viewpoint described above has become known as the quasi-equilibrium view of tropical
precipitation, and there is a vast literature devoted to studying the extent to which it is
useful in understanding the tropical general circulation (see e.g., Neelin and Held, 1987;
Emanuel et al., 1994; Emanuel, 2007; Privé and Plumb, 2007a,b; Nie et al., 2010; Singh,
2019). While this view has its limits, there is little doubt that the low-level entropy or
equivalent potential temperature distributions are more relevant for understanding large-
scale circulations than the temperature itself (e.g., Hurley and Boos, 2013).

3.2 Hide’s theorem

Let us return to the radiative-convective equilibrium solution to the thermodynamic equa-
tion. Can this be used to construct a full solution to the governing equations? And if so,
why is this state not observed? More generally, under what conditions is such a solution
physically realisable?
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3.2.1 Column-by-column RCE with balanced zonal flow

As we have shown above, we may construct a radiative-convective equilibrium state for the
atmosphere in which the thermodynamic balance within each column is between radiative
cooling and convective heating. Under certain simplifying assumptions, this state can be
used to construct a complete solution to the governing equations. In particular, if we
assume that frictional forces are negligible except at the surface, we may then construct a
column-by-column RCE solution as follows:

1. The local thermodynamic balance is that of RCE.

2. Each column is in a state of hydrostatic balance

3. There is no large-scale meridional overturning: v = 0 and ω = 0.

4. The solution is axisymmetric; all quantities are independent of longitude.

5. The winds at the surface are identically zero.

Condition (i) implies that our solution satisfies the thermodynamic equation. Condition
(ii) ensures that the vertical momentum equation is satisfied. Condition (iii) and (iv) imply
that the flow is non-divergent, and so the mass conservation equation is also satisfied. Con-
dition (v) implies that there is no frictional stress between the surface and the atmosphere,
and therefore we may neglect friction everywhere. Applying conditions (iii-v) to the zonal
momentum equation, we find that it is trivially satisfied. The final equation to satisfy is
the meridional momentum equation, which may be written,

2Ω sinφu+
u2

Re
tanφ = − 1

Re

∂Φ

∂φ
, (3.7)

where we have neglected friction and terms involving v and ω. Equation (3.7) represents
a nonlinear balance equation for the zonal wind. Under the Cartesian approximation it
reduces to geostrophic balance.

Differentiating (3.7) with respect to pressure, we have the thermal wind relation,

∂

∂p

{
2Ω sinφu+

u2

Re
tanφ

}
= − 1

Re

∂

∂φ

∂Φ

∂p
. (3.8)

Applying hydrostatic balance and using the ideal gas law, this may be written in terms of
the temperature,

∂

∂p

{
2Ω sinφu+

u2

Re
tanφ

}
=

Rd
pRe

∂T

∂φ
. (3.9)

Integrating with respect to pressure, we have,

2ΩRe sinφu+ u2 tanφ = −Rd ln

(
ps
p

)
∂T̂

∂φ
, (3.10)
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where we have assumed the surface zonal wind is zero, and we have defined an average
temperature,

T̂ =
1

ln
(
ps
p

) ∫ ln ps

ln p
T d ln(p), (3.11)

where ps is the (assumed constant) surface pressure.

The temperature in RCE may be calculated for each latitude using a procedure similar to
that of Manabe and Strickler (1964). The zonal wind can then be evaluated using (3.10).
Combined with our initial assumption that v = ω = 0, we now have a complete RCE
solution to the governing equations!

The RCE solution has no large-scale overturning, and the solar energy absorbed at each
latitude is emitted back to space as long-wave radiation; there are no meridional energy
transports by atmospheric motions. Apart from the convective motions that transport heat
vertically (and which we assume remain local), there is no weather to speak of!

Why does Earth’s general circulation look nothing like this RCE solution? There are
a number of possible answers, including that we have neglected the seasonal cycle in our
discussion, that the RCE solution may be baroclinically unstable, that our assumption that
convective motions remain local may be unfounded (Raymond, 2000; Emanuel et al., 2014),
or indeed that an axisymmetric solution cannot be realised on a planet with continents.
But there is a more fundamental reason that the RCE solution cannot exist that has to
do with the unattainability of the zonal wind distribution implied by (3.10). The relevant
constraint is known as Hide’s theorem and is discussed in the next section.

3.2.2 Constraints on the RCE state

Hide’s theorem (Hide, 1969) discusses the range of possible planetary circulations attainable
for flows of a certain class. It is based on the concept of angular momentum, which we
now introduce.

3.2.3 Angular momentum of the atmosphere

The angular momentum of an object is equal to its momentum crossed with a moment
arm. For a fluid, it is useful to consider quantities per unit mass, and so we write the
angular-momentum per unit mass M as,

M = x× ui, (3.12)

where ui is the velocity measured in an inertial reference frame. The moment arm can
be taken with respect to any point, and here we assume this point is the origin, so that
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Figure 3.4: Schematic of the position vector x the velocity of the Earth’s surface ue and the unit
vector in the direction of Earth’s rotation axis Ω̂. Additionally the scalar distances Re and r⊥ are
depicted. Adapted from Vallis (2017).

the moment arm is simply the position vector. Taking the Lagrangian time derivative, we
have,

DM

Dt
=

Dx

Dt
× ui + x× Dui

Dt
. (3.13)

The first term on the right-hand side is the velocity crossed with itself, which is zero. The
second term corresponds to the moment arm crossed with the acceleration of the air parcel,
which by Newton’s Second Law is the force per unit mass. We therefore have that,

DM

Dt
= x× f = τ , (3.14)

where τ is known as the torque.

Angular momentum of objects on Earth (planetary angular momentum)

Let us consider the angular momentum of an object stationary on the surface of the Earth.
It is convenient to take the moment arm with respect to the centre of the Earth. We may
then write,

Me = x× ue (3.15)

where ue is the velocity of the Earth’s surface as it rotates. Of particular interest will
be the angular momentum in the direction of the Earth’s rotation axis, which we may
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write,
Me = Ω̂ · (x× ue) , (3.16)

where Ω̂ is a unit vector in the direction of the Earth’s rotation vector (Fig. 3.4). While
this is only one component of the angular-momentum vector, we will refer to it as the
angular momentum for convenience.

Using the “scalar triple product” identity, we may write the angular momentum as,

Me = x ·
(
Ω̂× ue

)
. (3.17)

Since Ω̂ and ue are perpendicular, we therefore have,

Me = |x||ue| cos ξ, (3.18)

where ξ is the angle between the position vector x and the cross product Ω̂×ue. Examining
Fig 3.4 and performing some geometry, it may be seen that the angular momentum of the
Earth’s surface may be written,

Me = |x||ue| cosφ. (3.19)

It may also be seen that |x| = Re, and that |ue| = ΩRe cosφ, so that the angular momentum
of an object on Earth is given by,

Me = ΩR2
e cos2 φ. (3.20)

All objects on Earth have angular momentum Me as a result of the Earth’s rotation. This
component of angular momentum will be referred to as planetary angular momentum.

Angular momentum of the winds (relative angular momentum)

In addition to planetary angular momentum, the atmosphere has angular momentum be-
cause of its motion relative to that of the Earth, which we refer to as relative angular
momentum, Mr. The total angular momentum is simply the sum of the planetary and
relative components,

M = Ω̂ · {x× (ue + u)} (3.21)

where u is the velocity in the frame of reference of the Earth. The only component of the
velocity that contributes to angular momentum in the direction of the Earth’s axis is that
in the zonal direction. We therefore have that,

M = |x| (|ue|+ u) cosφ = Re cosφ (ΩRe cosφ+ u) . (3.22)

Note that our definition for M contains the radius of the Earth Re rather than the distance
of the air parcel from the centre of the Earth. This is to be consistent with our use
of the shallow fluid approximation in deriving the governing equations in the previous
chapter.
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Conservation of angular momentum

The utility of angular momentum comes about because it is conserved in the absence of
torques. In particular, the angular momentumM is conserved for axisymmetric, frictionless
flow. This may be easily seen by substituting (3.22) into the zonal momentum equation in
height coordinates (2.26a), which, with a little algebra gives,

DM

Dt
= −1

ρ

∂p

∂λ
+Re cosφFνλ. (3.23)

If the flow is axisymmetirc, all variables are independent of longitude and the first term
on the right-hand side is zero. If the flow is frictionless, the second term on the right-hand
side is also zero, and angular momentum is conserved.

Multiplying the above equation by ρ and assuming axisymmetry, we have,

ρ
∂M

∂t
+ ρu · ∇M = Reρ cosφFνλ. (3.24)

Recall also that the continuity equation may be written,

∂ρ

∂t
+∇ · (ρu) = 0. (3.25)

Summing the two previous equations, we can derive the angular momentum conservation
equation in flux form,

∂ρM

∂t
+∇ · (ρuM) = Reρ cosφFνλ, (3.26)

valid for axisymmetric flow.

3.2.4 Angular-momentum extrema in axisymmetric steady flow

We now consider constraints on the range of possible flows placed on the atmosphere by
conservation of angular momentum. Consider an atmosphere with a steady, axisymmetric
circulation. Further, suppose that the frictional stress within this atmosphere acts as a
downgradient diffusion in angular momentum with some viscosity ν. Under these assump-
tions, the angular momentum conservation equation (3.26) may be written,

∇ · (ρuM) = ∇ · (ρν∇M) . (3.27)

If the atmosphere is stationary, the angular momentum is a maximum on the equator,
and decreases monotonically poleward. Suppose for this atmosphere, however, the zonal
winds are westerly in the equatorial upper troposphere, so that there is a local maximum
of angular momentum there, as shown in Fig. 3.5.
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Figure 3.5: Idealised angular-momentum distribution that violates Hide’s theorem. Lines repre-
sent contours of angular momentum with vales increasing toward the equator. The thick contour
corresponds to a closed boundary on which M = M0 is constant as in (3.29).

Since we assume a local maximum in M exists, we must be able to find a closed contour
surrounding the maximum on which M = M0 is a constant. Integrating (3.28) over the
region bounded by this contour, we have,∮

M>M0

∇ · (ρuM) dV =

∮
M>M0

∇ · (ρν∇M) dV . (3.28)

By the divergence theorem, these integrals may be written as surface integrals over the
closed surface on which M = M0,∮

M=M0

ρMu · n̂ dS =

∮
M=M0

ρν∇M · n̂ dS . (3.29)

Consider the left-hand side of the above equation. Since M = M0 on the integration
surface, we may remove it from the integral so that,∮

M=M0

ρMu · n̂ dS = M0

∮
M=M0

ρu · n̂ dS . (3.30)

The integral on the right-hand side corresponds to the net mass flux out of the region,
which by steady mass conservation must be zero. Now consider the right-hand side of
(3.29). ∇M is perpendicular to level sets of M and points towards increasing M so that,
on the integration surface, ∇M · n̂ = − |∇M | < 0. Since ρ and ν are both positive, this
implies that the right-hand side is negative definite!

We have therefore arrived at a contradiction; the left-hand side of (3.29) is zero, but for
any non-zero viscosity, the right-hand side is negative definite. The conclusion we reach is
known as Hide’s theorem:
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A steady, axisymmetric flow cannot develop maxima in angular momentum
away from boundaries; such maxima will always be eroded by diffusion.

Hide’s theorem applies to any steady, axisymmetric flow with non-zero viscosity. This
means that, strictly speaking, it does not apply to inviscid flows. However, since even a
negligible amount of viscosity produces a contradiction in (3.29), it applies to any real flow
no matter how small the effect of friction may be. Thus while an inviscid solution that
violates Hide’s theorem is mathematically sound (in that both sides of (3.29) are zero), it is
singular, in that it is not the correct solution in the limit in which the viscosity is reduced
to zero from a positive value. Thus, any physically realisable solution of the atmospheric
circulation cannot violate Hide’s theorem.

3.2.5 The violation of Hide’s theorem

Let us now consider the RCE solution developed in the previous section from the point
of view of Hide’s theorem. Since the RCE solution is assumed steady and axisymmetric,
Hide’s theorem is applicable, and such a solution must not produce an angular-momentum
maximum above the surface in order to be attainable. How can we tell if the RCE solution
produces such a maximum?

Consider the thermal wind equation (3.8),

∂

∂p

{
2Ω sinφu+

u2

Re
tanφ

}
=

1

Re

∂α

∂φ
, (3.31)

where we have used hydrostatic balance. Now, usually, we rewrite this equation in terms
of temperature. However, in this case, we will use some thermodynamics, in combination
with the assumption of moist neutrality, to instead put it in terms of the boundary-layer
entropy.

Neglecting the effects of condensed water, we may write the specific volume as a function
of pressure and temperature α = α(p, T ). But since the saturation entropy is also a
function of temperature and pressure s∗ = s∗(p, T ), we may, without loss of generality,
write, α = α(p, s∗). By the chain rule, we also have that,

∂α

∂φ

∣∣∣∣
p

=
∂α

∂s∗

∣∣∣∣
p

∂s∗

∂φ

∣∣∣∣
p

. (3.32)

The derivative of the specific volume with respect to saturation entropy is a thermodynamic
function of pressure and temperature. In fact, we can derive a Maxwell relation that
states,

∂α

∂s∗

∣∣∣∣
p

=
∂T

∂p

∣∣∣∣
s∗
, (3.33)
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where the right-hand side corresponds to the moist adiabatic lapse rate (see Emanuel, 1994,
for an introduction to Maxwell relations) . Substituting (3.32) and (3.33) into (3.31), we
have

∂

∂p

{
2Ω sinφu+

u2

Re
tanφ

}
=

1

Re

∂s∗

∂φ

∂T

∂p

∣∣∣∣
s∗
, (3.34)

Now, by the assumption that the RCE solution is moist neutral, we may assume that s∗

is independent of pressure and equal to the boundary-layer entropy sb. We may there-
fore directly integrate the above equation from the boundary layer to the tropopause to
give,

2Ω sinφut +
u2
t

Re
tanφ = −(Tb − Tt)

Re

∂sb
∂φ

, (3.35)

where the subscript b and t refer to variables evaluated in the boundary layer and at the
tropopause, respectively, and we have used that the zonal wind in the RCE solution is zero
at the surface.

Equation (3.34) is a quadratic for the zonal wind at the tropopause. Applying the quadratic
formula, we may solve this equation for the tropopause zonal velocity ut,

ut
ΩRe

=

{(
1− (Tb − Tt)

Ω2R2
e sinφ cosφ

∂sb
∂φ

) 1
2

− 1

}
cosφ, (3.36)

where we have taken the root that ensures that ut → 0 as ∂φsb → 0.

The tropopause zonal wind distribution (and therefore the distribution of angular momen-
tum) within the RCE state is dependent on the meridional gradient of boundary layer
entropy sb. A detailed evaluation of sb in the RCE state requires a full radiative-convective
calculation with a numerical model. Nevertheless, some insight may be gained by thinking
about hypothetical sb distributions.

As a starting point for thinking about the RCE distribution of sb, we note that, to a
very good approximation, the annual-mean solar insolation as a function of latitude has a
dependence on latitude proportional to sin2 φ (see Hartmann, 1994, and Fig. 1.1). Based on
this, we consider an idealised boundary-layer entropy distribution that has the functional
form,

sRCE
b = sRCE

b0 − δsRCE
b sin2 φ. (3.37)

where sRCE
b0 and δsRCE

b are constants. Substituting this distribution into (3.36), we have

uRCE
t

ΩRe
=


(

1 +
2(Tb − Tt)δsRCE

b

Ω2R2
e

) 1
2

− 1

 cosφ, (3.38)

where the superscript RCE refers to a quantity in the RCE state. It may be easily seen
from the above equation that the zonal wind at the tropopause in the RCE solution is
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westerly (positive) at the equator for any positive value of δsRCE
b . This implies that the

angular momentum of the equatorial tropopause is greater than the angular momentum of
Earth’s surface at any point on the planet. In particular, this implies that the maximum
value of the angular momentum in the atmosphere occurs above the surface. That is, the
RCE solution violates Hide’s theorem.

More generally, one can show that any RCE distribution sRCE
b will violate Hide’s theorem

if it has non-zero latitudinal curvature at the equator. Given the annual-mean distribution
of solar insolation on Earth, any reasonable estimate of sRCE

b is likely to include such
curvature.

The above discussion provides an answer to the main question of this chapter. Why does
the atmospheric circulation exist? It is because the relevant solution with no large-scale
circulation is unphysical, it produces an angular-momentum distribution that cannot be
maintained by any real flow. In order to produce a physically attainable angular momentum
distribution, the maximum in angular momentum at the equatorial tropopause must be
removed. By thermal wind balance, this requires a reduction in the meridional temperature
gradients. Such a reduction can be produced by a large-scale overturning circulation that
transports energy poleward.

3.3 Summary

In this chapter we investigated the fundamental reasons for the existence of a large-scale
overturning circulation in the atmosphere by attempting to construct solutions to the
governing equations that had no circulation. Our line of reasoning was as follows:

• We showed that an atmosphere in radiative equilibrium is gravitationally unstable,
and any small perturbation to this state would lead to the onset of convection.

• We constructed a radiative-convective equilibrium solution in which gravitational
instability is assumed to be released locally and thus there is no large-scale circulation.

• We showed that the RCE solution required, by thermal wind balance, an unphysical
distribution of angular momentum within the atmosphere. This implies that the
RCE solution requires horizontal temperature gradients that cannot be maintained;
a large-scale circulation must exist in order to reduce these temperature gradients.

In the next chapter, we will investigate the properties of the atmospheric circulation in
an axisymmetric atmosphere as a first step toward considering the atmosphere in its full
complexity.



Chapter 4

Axisymmetric Hadley Cells

In the previous chapter, we constructed a radiative-convective equilibrium solution for the
atmosphere in which there was no large-scale circulation. Such a solution is valid for a
strictly inviscid fluid, but it is not the correct solution when one takes the limit in which
the viscosity is reduced to zero from a positive value. In this chapter we will describe this
“nearly-inviscid” solution to the governing equations. For the time being, we remain within
the axisymmetric framework (thereby neglecting zonal variations) and take an annual-mean
view (thereby neglecting seasonal variations). These assumptions will be reexamined in
chapter 8.

What does the axisymmetric nearly-inviscid circulation look like? Assuming steady, ax-
isymmetric, nearly-inviscid flow, the equation for angular momentum conservation be-
comes,

u · ∇M = 0. (4.1)

Assuming drag near to the surface is the only important form of friction, this equation
applies everywhere above the planetary boundary layer. Equation (4.1) states that the
vector velocity and the gradient ∇M are perpendicular. Since ∇M is also perpendicular
to the surfaces of constant angular momentum, this implies that the velocity is parallel to
angular momentum contours. That is, angular momentum is conserved along streamlines
of the flow, and streamlines and angular momentum contours are parallel. A complete
model of such a circulation was presented by Held and Hou (1980).

4.1 The Held & Hou model

The model of Held and Hou (1980) was originally framed in a Boussinesq, stably stratified
fluid with rigid top and bottom boundaries. Here, we will give it a slightly more atmospheric
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flavour, by framing the model as an ideal gas in which the thermal structure is maintained
by convection through the assumption of convective quasi-equilibrium.

4.1.1 Conservation of angular momentum along streamlines

We begin by assuming, on physical grounds, that the zonal-mean circulation corresponds
to rising air at the equator which then reaches the tropopause and flows poleward. We
will refer to this circulation as the Hadley Cell, although at this stage we do not know its
properties. We assume that, in the boundary layer, friction is strong, and the boundary-
layer zonal winds are everywhere weak, so that the angular momentum of boundary-layer
air Mb is roughly equal to the planetary angular momentum Mb ≈ Mp. This implies that
air rising at the equator will initially have an angular-momentum equal to that of the
Earth at the equator Mp(φ = 0) = ΩR2

e. By our discussion above, angular momentum
is conserved along this streamline when it is above the boundary layer, and the air will
maintain this angular momentum as it reaches the tropopause and flows poleward (Fig.
4.1). We may therefore write the angular momentum at the tropopause within the Hadley
cell Mt(φ) as,

Mt(φ) = ΩR2
e. (4.2)

Expressing the angular momentum in terms of the zonal wind, we have,

Re cosφ (ut + ΩRe cosφ) = ΩR2
e. (4.3)

This may be rearranged to give an explicit expression for the zonal velocity at the tropopause,

uAMC
t = ΩRe sinφ tanφ. (4.4)

where we use the superscript AMC to refer to the angular momentum conserving wind, that
is, the wind distribution associated with an air parcel initially stationary at the equator
moving poleward and conserving its angular momentum.

Assuming that the atmosphere is in convective quasi equilibrium, and therefore s∗ is in-
variant with height, the thermal wind equation (3.34) is valid. Further assuming that the
surface zonal winds are weak relative to the zonal wind at the tropopause, the integral
form (3.35) is also valid. This provides a relationship between the boundary-layer entropy
and the zonal winds at the tropopause. Substituting uAMC into (3.35), we have,

2Ω2Re sin2 φ tanφ+ Ω2Re sin2 φ tan3 φ = −(Tb − Tt)
Re

∂sAMC
b

∂φ
, (4.5)

where sAMC
b is the boundary-layer entropy associated with the AMC solution. After some

rearrangement, this gives an equation for the meridional gradient of boundary-layer en-
tropy,

(Tb − Tt)
Ω2R2

e

∂sAMC
b

∂φ
= − tan3(φ)(1 + cos2 φ). (4.6)
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Figure 4.1: Schematic of the axisymmetric Hadley Cell. Angular momentum is conserved along
the rising and poleward branches (M = M0), while the zonal surface winds in the region of the return
flow are assumed to be weak (M = Mp) (black arrows). The descending branch is either vertical or
slanted depending on the mechanisms that bring the angular momentum in the descending branch
to the surface value (grey arrows).

Finally, assuming the depth of the troposphere in temperature coordinates Tb − Tt is con-
stant, we may integrate the above equation with respect to latitude to give an explicit
equation for sAMC

b ,

sAMC
b (φ) = s0 −

Ω2R2
e

2(Tb − Tt)
sin4 φ

cos2 φ
(4.7)

where s0 is the value of boundary-layer entropy at the equator, which remains a free
parameter.

At this point, we must stress that the only assumptions being made about the circulation
is that it is in convective quasi-equilibrium and angular momentum is conserved along
streamlines. And yet we have discovered a very strong constraint on the thermal structure
of the atmosphere. In particular, we have not assumed anything about the strength or
energy fluxes associated with the Hadley Cell, and yet we can confidently state the hori-
zontal temperature gradients that must result. Clearly angular momentum conservation is
a powerful principle.

Equation (4.7) is characterised by a very flat distribution of entropy near the equator (Fig.
4.2). Indeed, as required by Hide’s theorem, the functional form embodied in (4.7) has no
curvature at the equator. On the other hand, the gradient of sAMC

b increases rapidly outside
the tropics, and both the entropy gradient and the angular momentum conserving wind
uAMC approach infinity at the pole. This implies that the angular momentum conserving
solution cannot continue to the pole; the theory predicts that the Hadley Cell has a latitu-
dinal extent! Beyond the Hadley Cell, the only available solution within the axisymmetric
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Figure 4.2: Solution to the Held-Hou model of the Hadley Cell plotted against the sine of lati-
tude. (top) Boundary-layer entropy and (bottom) tropopause zonal wind according to the angular-
momentum conserving (AMC) solution (black) and according to the RCE solution (grey). The
AMC solution is valid equatorward of the vertical dashed line, while the RCE solution is valid
poleward of the vertical dashed line. The red and blue areas in the top panel are of equal size.

framework is that of RCE. The theory of Held and Hou (1980) therefore predicts a well
defined Hadley Cell beyond which the atmosphere is in RCE (Fig. 4.2). Specifically, the
boundary layer entropy sb equals sAMC

b within the Hadley Cell, while sb = sRCE
b further

poleward. In the next section we seek to determine what sets the Hadley Cell extent.

4.1.2 Thermodynamic constraints on the Hadley Cell extent

To estimate the Hadley Cell extent, we need to make some appeal to thermodynamic
considerations. On physical grounds, we expect the Hadley Cell to transport energy pole-
wards. In an steady-state axisymmetric atmosphere, the energy flux divergence owing to
the Hadley Cell heat flux must be balanced by the net top-of-atmosphere (TOA) flux of
radiation at each latitude1 . As for the RCE solution, a detailed estimate of these fluxes
and their dependence on the Hadley Cell itself requires a numerical calculation with a
radiative-convective model. However, we can advance or understanding by considering a
very simple parameterisation for the energy fluxes.

1convective heating/cooling cannot affect the top-of-atmosphere energy balance because it only trans-
ports energy within the column.
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Suppose the net radiative flux at the top of the atmosphere FTOA
net is a linear function of

the boundary-layer entropy, so that,

FTOA
net = −k(sb − sRCE

b ) (4.8)

where k is a constant. This parameterisation is doubtless oversimplified, but it has the
useful properties that the net flux is zero when the atmosphere is in RCE, and that the
net flux increases the farther away the atmosphere is from RCE.

For a steady atmosphere, the global average TOA flux of radiation must be zero, and this
implies, ∮

globe
sb − sRCE

b dA = 0. (4.9)

Since poleward of the Hadley Cell, sb = sRCE
b , we may write,∫ φH

0
sAMC
b cosφ dφ =

∫ φH

0
sRCE
b cosφ dφ, (4.10)

where we have defined φH as the latitudinal extent of the Hadley Cell, and we have used
the zonal and hemispheric symmetry of the problem to write it in terms of an integral in
longitude within one hemisphere.

In addition to the above integral constraint, we also have a continuity constraint on the
entropy distribution where we assume that the boundary-layer entropy is continuous at the
Hadley Cell boundary,

sAMC
b (φH) = sRCE

b (φH). (4.11)

Graphically, the two constraints above may be interpreted as the requirement that the red
and blue areas on Fig. 4.2 are equal. In principle, one may use (4.7) for the AMC solution
and our simplified expression (3.37) for the RCE solution to solve (4.10) and (4.11) for
φH . In practice, this must be done numerically. However, if one makes the small angle
approximation, in which sinφ ≈ φ, and cosφ ≈ 1, and analytic solution for φH may be
obtained,

|φH | =
(

5

3

(Tb − Tt)
Ω2R2

e

δsRCE
b

) 1
2

. (4.12)

To obtain an estimate of the Hadley Cell extent according to Held-Hou theory, we substitute
reasonable values into the above equation. Using (3.5), we have, for δsRCE

b ,

δsRCE
b ≈

cpδT
RCE
b

T
+
Lv
T
δq∗RCE (4.13)

where δTRCE and δq∗RCE are the pole to equator differences in temperature and saturation
specific humidity within the RCE state, and T is a temperature scale. Supposing that
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the tropospheric depth in temperature coordinates (Tb − Tt) = 100K, δTRCE
b = 100 K,

δq∗RCE = 0.02 and the temperature scale T = 270 K, we get an estimate of φH = 38◦.
The precise value obviously depends on the exact parameters used, but it is nonetheless
roughly similar to the observed Hadley Cell extent, which is about 30◦.

4.1.3 Tropopause zonal wind distribution

The tropopause level zonal wind in the Held-Hou solution is given by the AMC wind (4.4)
for latitudes equatorward of φH and the RCE zonal wind (3.38) further poleward (Fig.
4.2). The AMC wind increases with latitude, roughly quadratically for small angles, while
the RCE solution weakly decreases with latitude.

Unlike the boundary-layer entropy, the tropopause zonal wind is discontinuous at the
boundary φH . This results in the wind distribution being characterised by a sharp jet
at the poleward edge of the Hadley Cell, just as is observed! However, for Earth-like
parameters, uAMC

t increases to close to 200 m s−1 as the latitude approaches the estimated
Hadley Cell extent of roughly 38◦. Clearly, the zonal winds predicted by the Held-Hou
model are considerably stronger than those observed.

4.1.4 Energy fluxes and the strength of the Hadley cell

To determine the strength of the Hadley Cell, we will once again turn to the atmospheric
energy budget. In steady state, the divergence of the meridional energy flux by the Hadley
Cell must be equal to the net radiative flux at the top of the atmosphere FTOA

net . Applying
the simple parameterisation of radiative heating (4.8),

1

Re cosφ

∂FH cosφ

∂φ
= k(sAMC

b − sRCE
b ) (4.14)

where FH is the zonal-mean meridional flux of energy by the Hadley Cell and may be
written,

FH =

∫ ps

0
[v][h]

dp

g
, (4.15)

where h is the relevant energy variable discussed further below.

Held and Hou (1980) assumed that the meridional mass flux within the Hadley Cell is
confined to layers of pressure depth δp at the surface and tropopause, so that we may
write,

FH = hb

∫ ps

ps−δp
[v]

dp

g
+ ht

∫ pt

pt−δp
[v]

dp

g
. (4.16)

By mass conservation, the two integrals in the above equation are equal in magnitude and
opposite in sign. We therefore have,

FH = (ht − hb)
Ψmax

2πRe cosφ
, (4.17)
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where Ψmax is the maximum value of the streamfunction at each latitude, with the stream-
function being defined in the usual way following (2.61). The strength of the Hadley cell
is therefore related to the energy flux by the Hadley cell and the difference ∆h = ht − hb
between the poleward and equatorward flowing layers. But what exactly is h?

A first look at energetics

Held and Hou (1980) considered the Hadley cell in a dry stably stratified fluid. In the
absence of moisture, the relevant energy variable is the dry static energy2 h = hd = cpT+Φ.
The difference in h between the surface and tropopause in such a fluid depends on the
stratification, which Held and Hou (1980) took as an external parameter. Therefore, in
the original Held-Hou model, the energy and strength of the Hadley Cell are related by an
external parameter. Given a parameterisation of the top-of-atmosphere radiative fluxes,
one may calculate the required heat transport, and this fixes the Hadley Cell strength for
a given stratification.

In our case, we are considering a moist atmosphere in convective quasi-equilibrium. The
relevant energy variable is the moist static energy h = hm = cpT + Φ + Lvq. Moist static
energy is a function of both temperature and humidity, and it is closely related to the
entropy. In fact, one may define a saturation moist static energy h∗m = cpT + Φ + Lvq

∗,
with the property that, for a moist neutral atmosphere,

∂h∗m
∂z
≈ 0, (4.18)

above the boundary layer.

Now, let us consider the difference between the saturation moist static energy and the
actual moist static energy. By their respective definitions, we may write,

h∗m − hm = Lv(q
∗ − q). (4.19)

The function in brackets on the right-hand side is known as the saturation deficit, and it
has the following properties:

1. In the boundary layer, the relative humidity is high, and q∗ − q is small.

2. In the mid troposphere, the relative humidity is typically lower, and q∗ − q is large.

3. In the upper troposphere, the temperature is low, and therefore q∗ is small, implying
that q∗ − q is also small.

The properties above suggest that, for an atmosphere in convective quasi-equilibrium, hm
has a minimum in the midtroposphere. Indeed, this is also the case in Earth’s tropics (Fig.
4.3).

2We also neglect here the transport of kinetic energy, but this is generally two orders of magnitude
smaller than the transport of dry static energy.
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Figure 4.3: Profiles of the tropical-mean (20◦S-20◦N) and time-mean dry static energy (dotted),
moist static energy (solid) and saturation moist static energy (dashed) according to the NCEP-DOE
reanalysis for the years 1981-2010.

The implications of the non-monotonic profile of hm is that the Hadley Cell meridional
energy flux,

FH =

∫ ps

0
[v][hm]

dp

g
, (4.20)

is highly sensitive to both the profile of the meridional velocity [v] and the profile of the
saturation deficit (q∗ − q). Indeed, it is not obvious a priori that the Hadley Cell should
even transport energy poleward!

The above complications in the energetics of moist atmospheres are usually described in
terms of the gross moist stability (GMS) first introduced by Neelin and Held (1987). The
GMS effectively plays the role of ∆h in a moist atmosphere, but it depends on both the
profile of hm, and the vertical structure of the overturning circulation. A full understanding
of the behaviour of GMS is still lacking and is the subject of active research (see e.g.,
Raymond et al., 2009; Inoue and Back, 2015, 2017).

A further complication in the energetics of the Hadley Cell that we have not considered
yet is the ocean. At low latitudes, most of the poleward energy transport through the
climate system occurs in the ocean rather than in the atmosphere. In fact, it may be
shown that the response of the oceanic circulation to the Hadley Cell wind stress results
in a poleward flux of energy a factor of three larger than that of the Hadley Cell itself
(Held, 2001). Neglect of oceanic processes in considering poleward energy transport in the
climate system is therefore of dubious utility.

It is clear that a detailed analysis of the energetics of the Hadley Cell, and the energetics of
the low-latitude climate system in general, requires a consideration of a number of aspects
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not present in the simple Held-Hou model. We therefore postpone further discussion of
atmospheric energetics to chapter 9 when we discuss the energy budget of the atmosphere
in more detail.

4.1.5 Summary of the Held & Hou model

The key features of the Held-Hou model may be summarised as follows:

• The Held-Hou model predicts a latitudinally confined Hadley Cell, with rising motion
at the Equator and descending motion in the subtropics. Further poleward, there is
no large-scale circulation.

• Associated with the Hadley Cell, there is a sharp subtropical jet at the cell edge.

• The Hadley Cell transports energy from the tropics to the subtropics, but there is
no energy transport beyond the poleward edge of the Hadley Cell.

• The boundary-layer entropy distribution becomes very flat in the tropics, but remains
at its RCE value poleward of the Cell edge.

These features share much in common with the observed zonal-mean circulation on Earth;
The Hadley Cell is the dominant meridional overturning (Fig. 1.9), it terminates within the
subtropics and has an associated jet (Fig. 1.6), and the meridional gradient of temperature
in the tropical troposphere is close to zero (Fig. 1.5). Obviously the detailed predictions
of the Held-Hou theory are inaccurate given the simplicity of the model. But given its
similarity to the observed circulation, it is tempting to conclude that it captures much
of the essence of the dynamics of the Hadley Cell. In the next section, we discuss some
limitations of the Held-Hou theory as a representation of Earth’s Hadley Cell, and this
will lead us to consider the role played by eddies in the general circulation in much more
detail.

4.2 Limitations of the Held & Hou model

4.2.1 Numerical simulations

To motivate this section, we present the original numerical simulations of the Held-Hou
model in Fig. 4.4. The figure shows three simulations, each with different values of viscosity.
As expected, the subtropical jet becomes sharper as the viscosity decreases, more closely
approximating the nearly-inviscid analytical solution. However, the strength of the Hadley
Cell, measured by the maximum value of the streamfunction, is strongly dependent on the
viscosity, and in fact increases with increasing viscosity! This is rather surprising, as we do
not generally expect that increasing the importance of friction within a flow should lead
to a more energetic circulation. How can we understand these results?
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Figure 4.4: Numerical solutions of the Held-Hou model with decreasing viscosity (top to bottom).
(left) Overturning streamfunction Ψ with contour interval of 0.1Ψmax and (right) zonal wind speed
with contour interval 5 m s−1 and easterly winds shaded. The Hadley Cell strength Ψmax is 5674,
2680 and 1554 m2 s−1 in the top, middle, and bottom panels, respectively. From Held and Hou
(1980).

4.2.2 Angular-momentum sources and sinks

Let us return to our original conception of the Held-Hou model (Fig. 4.1). Air rises at
the equator with angular momentum Mt(φ) = Mp(0) and conserves its angular momentum
as it reaches the tropopause and flows polewards. In the return flow within the boundary
layer, the winds are weak, and the angular momentum is close to that of the Earth Mb(φ) =
Mp(φ). But how does the air at the tropopause with angular momentum Mp(0) return to
the boundary layer having angular momentum Mp(φ)?

There are two possible solutions (Fig. 4.1):

1. The air takes a slanted path on its descent, such that it enters the boundary layer
close to the equator where its angular momentum matches that of the Earth.
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2. The air loses its angular momentum on its descent by some process.

The first solution is the only option in axisymmetric flows with very low viscosity, and
slanted descending branches have been found in a number of numerical (Satoh et al., 1995;
Singh and Kuang, 2016) and theoretical (Fang and Tung, 1996) models of axisymmetric
Hadley Cells.

If the viscosity is somewhat higher, friction can act as a sink of angular momentum in order
to reduce it as air slowly descends from the tropopause to the boundary layer in the Hadley
Cell’s descending branch. The smaller the viscosity, the more time required to reduce the
tropopause angular momentum to boundary-layer values, and the weaker the descent rate
within the Hadley Cell. This heuristic argument provides an explanation for the viscosity
dependence of the Hadley Cell strength found in the numerical solutions of Held and Hou
(1980).

In Earth’s atmosphere, angular momentum can also be transported by eddy fluxes, and
this provides another pathway through which the required sink of angular momentum may
come about. This provides a hint that a purely axisymmetric model may not be able to
account for the observed behaviour of Earth’s Hadley Cell. In the next few chapters, we
will explore the role of non-axisymmetric motions on Earth’s angular momentum budget,
first from the perspective of the midlatitude circulation, in chapter 5-7, and then through
the effect of eddy fluxes of angular momentum on the Hadley Cell in chapter 8.
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Chapter 5

The angular-momentum budget of
the atmosphere

In the previous two chapters, we investigated the circulation of an idealised axisymmetric
atmosphere, in which we neglected longitudinal variations in the flow. We saw that this
produced a somewhat realistic model for the tropical overturning, but it implied there could
be no large-scale circulation in the extratropics. This suggests that longitudinal variations
– eddies – are of first order importance to the large-scale circulation in extratropical regions.
In this chapter we will demonstrate this importance from the point of view of the angular-
momentum budget.

5.1 Motivation

In chapter 1, we showed some of the key features of the observed atmospheric circulation.
In particular we saw that Earth’s midlatitude circulation was characterised by,

• strong upper-level westerly winds (extending further poleward than the subtropical
jet discussed in the previous chapter)

• strong latitudinal temperature gradients

• westerly surface winds

• a thermally indirect meridional overturning (the Ferrel Cell)

• a strong upper-tropospheric maximum in eddy kinetic energy

Our aim in this chapter is to understand why these features exist.
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Thermal wind balance

A key concept that relates the first two points above is that of thermal wind balance. We
already touched upon this concept in chapters 2 and 3, but here we derive it in a simpler
form. Neglecting the time derivative, advection, metric terms, and viscous forces from the
meridional momentum equation (2.51b), we have geostrophic balance,

1

Re

∂Φ

∂φ
= −2Ω sinφu. (5.1)

Taking the vertical (pressure) derivative and using hydrostatic balance, we have,

1

Re

∂α

∂φ
= 2Ω sinφ

∂u

∂p
. (5.2)

Finally, using the ideal gas law, we may write,

Rd
pRe

∂T

∂φ
= 2Ω sinφ

∂u

∂p
. (5.3)

Or, in more familiar Cartesian notation,

Rd
p

∂T

∂y
= f

∂u

∂p
. (5.4)

The thermal wind equation relates meridional temperature gradients to vertical shear in
the zonal wind. In particular, where the temperature decreases rapidly toward the pole,
we expect westerly wind shear. To the extent that the surface winds are constrained by
friction to remain relatively weak, this implies that where temperature decreases strongly
toward the pole in the troposphere, there will be a westerly jet aloft.

The thermal wind relation therefore shows that the first two points above are strongly
related. However, it does not provide any insight as to why there should be either strong
temperature gradients or strong wind shear. This is particularly true when one examines
snapshots of the wind distribution rather than time means (Fig. 1.8), which reveals the
existence of very localised upper-tropospheric wind maxima, associated with regions of
sharp temperature gradients. Such features have have no obvious cause in the relatively
smoothly varying solar forcing, and they must be produced by the circulation itself. It
turns out that the angular momentum budget can provide considerable insight into the
relevant dynamics.

5.2 Angular momentum of Earth’s atmosphere

5.2.1 The angular-momentum budget

As discussed in the previous chapter, angular momentum is conserved for axisymmetric,
frictionless flow in the atmosphere. More specifically, we can use the primitive zonal-
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momentum equation in pressure coordinates (2.51a) to write an equation for angular mo-
mentum valid under general conditions given by,

DM

Dt
= −∂Φ

∂λ
+Re cosφFνλ, (5.5)

where M = Re cosφ(ΩRe cosφ+ u) is the angular momentum. It will also prove useful to
express this in terms of the relative angular momentum Mr = Re cosφu and the planetary
angular momentum Mp = ΩR2

e cos2 φ, which are governed by the equations,

DMr

Dt
= −∂Φ

∂λ
+Re cosφ(fv + Fνλ), (5.6a)

DMp

Dt
= −Re cosφ(fv), (5.6b)

where f = 2Ω sinφ is the Coriolis parameter.

Also, recall from chapter 2 that we can rewrite Lagrangian conservation equations like
those above in flux form. In particular, we may write the flux form of the relative angular
momentum equation as,

∂Mr

∂t
+

1

Re cosφ

{
∂(uMr)

∂λ
+
∂(vMr cosφ)

∂φ

}
+
∂(ωMr)

∂p
= −∂Φ

∂λ
+Re cosφ(fv+Fνλ). (5.7)

where we have used the continuity equation in pressure coordinates,

1

Rr cosφ

{
∂u

∂λ
+
∂(v cosφ)

∂φ

}
+
∂ω

∂p
= 0. (5.8)

5.2.2 Angular-momentum budget of the upper troposphere

Let us first consider the angular momentum budget in the upper troposphere. In this
region, frictional torques are weak, and so we may neglect Fνλ. Taking the zonal and time
mean of (5.7), we have,

1

Re cosφ

∂[vMr] cosφ

∂φ
+
∂[ωMr]

∂p
= Re cosφf [v]. (5.9)

Here, the time average of a time derivative is assumed to be zero, and a zonal average of a
zonal derivative is zero by periodicity. Using the definition of Mr, and rearranging,

f [v] =
1

Re cos2 φ

∂[uv] cos2 φ

∂φ
+
∂[uω]

∂p
. (5.10)

This gives an equation for the mean meridional flow in the upper troposphere. The right
hand side is proportional to the divergence of the flux of relative angular momentum out
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of a given latitude band. Incredibly, considering the zonal (angular) momentum budget
has given us a constraint on the meridional mean flow!

To make sense of the above equation, we can divide the transport terms on the right hand
side into mean and eddy components. Recall that for any variable q, we may write its
time- and zonal-mean latitudinal flux [vq] as the sum of three terms,

[vq] = [v][q] + [v∗q∗] + [v′q′], (5.11)

with a similar equation applying for the vertical flux [ωq]. Here, the terms on the right-
hand side of the above equation give the mean flux, the stationary eddy flux, and the
transient eddy flux, respectively. For brevity, we will define a “total” deviation q† = q− [q],
so that we may write the sum of the transient and stationary eddies as,

[v∗q∗] + [v′q′] = [v†q†]. (5.12)

Applying this decomposition to (5.10), we have,

f [v] =
1

Re cos2 φ

∂[u][v] cos2 φ

∂φ
+
∂[u][ω]

∂p
+

1

Re cos2 φ

∂[u†v†] cos2 φ

∂φ
+
∂[u†ω†]

∂p
. (5.13)

With the help of the zonal- and time-mean continuity equation,

1

Rr cosφ

∂[v] cosφ

∂φ
+
∂[ω]

∂p
= 0, (5.14)

we may transform (5.13) back into advective form,

f [v]− [v]

Re cosφ

∂[u] cosφ

∂φ
− ω∂[u]

∂p
=

1

Re cos2 φ

∂[u†v†] cos2 φ

∂φ
+
∂[u†ω†]

∂p
. (5.15)

Defining the vorticity,

ζ =
1

Re cosφ

{
∂v

∂λ
− ∂u cosφ

∂φ

}
, (5.16)

and taking its zonal mean, we may write (5.15) as

(f + [ζ])[v]− ω∂[u]

∂p
=

1

Re cos2 φ

∂[u†v†] cos2 φ

∂φ
+
∂[u†ω†]

∂p
. (5.17)

In the extratropics, the large-scale flow tends to be close to geostrophic balance1, and this
may be shown to imply that (i) the advection of angular momentum is dominated by its

1In particular, the flow is in what is known as the quasigeostrophic regime, implying that the Rossby
number, equal to the ratio of the Coriolis acceleration to advection, is small, and the Burger number, equal
to the ratio of the Rossby radius the horizontal scale of the motions in question is of order unity or smaller.
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horizontal component, and (ii) |ζ| << |f |. Outside the deep tropics, (5.17) therefore takes
a particularly simple form,

f [v] = −S, (5.18)

where S is known as the eddy momentum flux convergence2,

S = − 1

Re cos2 φ

∂[u†v†] cos2 φ

∂φ
. (5.19)

Equation (5.18) relates the time- and zonal-mean meridional flow directly to the eddy fluxes
of angular momentum. In regions where there is a convergence of angular momentum by
eddies, the flow is equatorward and in regions where there is an eddy momentum flux
divergence, there is poleward flow.

Observational estimates of the angular-momentum fluxes are consistent with this picture
(Fig. 5.1). Outside the deep tropics, the angular momentum fluxes are dominated by the
transient eddy component, and, in some regions of the northern hemisphere extratrop-
ics, the stationary eddy component. The angular-momentum fluxes are dominated by a
large-scale poleward transport from the subtropics to the subpolar regions in the upper
troposphere of each hemisphere, and a weaker transport from the polar regions towards the
equator. As a result, the eddy momentum flux divergence S has a tripole structure, with
maxima of divergence in the subtropics and polar latitudes, and a convergence maximum
in between.

The tripole strcuture in S is closely associated with the sign of the upper-tropospheric
meridional flow (i.e., the upper branches of the Hadley, Ferrel and Polar Cells), as expected
from (5.18). The thermally indirect Ferrel Cell may therefore be seen to be associated with
convergence of angular momentum by midlatitude eddies. Indeed, Fig. 5.1 indicates that
such eddies contribute to the upper-tropospheric poleward flow of the Hadley Cell; we will
discuss the influence of eddy processes on the Hadley Cell further in Chapter 8.

The above argument relates eddy fluxes of angular-momentum to the meridional flow in
the upper troposphere. But what about the lower troposphere? As shown in Fig. 5.1, the
relationship between the eddy angular momentum fluxes and the overturning appears to
be rather different in the lower troposphere. To see why this is, consider again (5.18) and
integrate from the surface to the top of the atmosphere with mass weighting,

f

∫ ps

0
[v]

dp

g
= −

∫ ps

0
S dp

g
. (5.20)

The right-hand side corresponds to the divergence of the eddy angular momentum flux
within the column, while the left-hand side is the total meridional mass flux within the

2Strictly speaking ReS is the horizontal eddy angular momentum flux covergence, but S is usually
referred to as the eddy momentum flux convergence in the literature.
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Figure 5.1: Zonal- and time-mean meridional relative angular momentum flux [vMr] (arrows;
m3 s−2) and the acceleration associated with the divergence of this flux (colors) broken down into
components associated with (a) total flow, (b) mean flow, (c) transient eddies, and (d) stationary
eddies according to the NCEP-DOE reanalysis. Contours in panel (a) show regions in which the
Coriolis acceleration f [v] is greater than 2 × 10−5 m s−2 (pink) and less than −2 × 10−5 m s−2

(cyan).

column. In steady-state, one cannot maintain a net mass flux across a latitude circle, and
the left-hand side must be zero. But there is no such restriction on the right-hand side, and
casual inspection of Fig. 5.1 shows that the right-hand side is not zero in the extratropics.



Drag and the angular-momentum budget 77
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NORTH POLE

Figure 5.2: Isobar (dashed) that intersects the surface of the Earth (grey) as viewed from directly
above the North Pole. Intersections of the isobar and the surface at the western slopes (λW ) and
eastern slopes (λE) are also shown. Adapted from Peixoto and Oort (1992).

What is going on here?

Clearly, our assumptions are breaking down, and (5.18) is not valid throughout the column.
The key physical process we are missing is drag on the atmosphere by the Earth. This drag
allows for a different balance of the angular momentum budget in the planetary boundary
layer, and we shall see that, near to the surface, we cannot neglect frictional torques and
nor can we neglect the geopotential gradient term as was done to derive (5.18).

5.3 Drag and the angular-momentum budget

Let us return to the un-approximated angular momentum budget (5.7). Taking the time
and zonal mean and assuming a steady state, we have,

1

Re cosφ

{[
∂uMr

∂λ

]
+
∂[vMr] cosφ

∂φ

}
+
∂[ωMr]

∂p
= −

[
∂Φ

∂λ

]
+Re cosφ

(
f [v] + [Fνλ]

)
.

(5.21)
Ordinarily, we would be justified in assuming that the zonal mean of a zonal derivative
is zero. However, near the surface, we must be careful, because if the isobar that we are
considering intersects the surface, the term in question will not be defined at all longitudes
(Fig. 5.2). Under such conditions, the zonal mean must be evaluated as a series of integrals
over all regions for which p < ps. For example, if we imagine a given isobar intersecting
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the surface at say, λ = λW , and reemerging at λ = λE , we would have that,[
∂a

∂λ

]
=

1

2π

∫ 2π

λE

∂a

∂λ
dλ+

1

2π

∫ λW

0

∂a

∂λ
dλ

= a(λ = λW )− a(λ = λE).

where we have used that a(λ = 2π) = a(λ = 0). If there is more than one region in which
p > ps, then the integral must be broken into multiple pieces. But it is easy to see that
the procedure above will lead to a contribution at each western outcrop of the pressure
surface and a negative contribution from each eastern outcrop. Therefore, we may write
in general, [

∂a

∂λ

]
=
∑
i

a(λ = λiW )− a(λ = λiE), (5.22)

for all regions i in which p > ps.

Applying this to (5.21), we note that u = 0 at the surface, and so the zonal derivative on
the left-hand side does not contribute to the zonal average. However, the contribution of
the geopotential gradient on the right-hand side is in general nonzero, and we have,

1

Re cosφ

∂[vMr] cosφ

∂φ
+
∂[ωMr]

∂p
=
∑
i

Φi
E − Φi

W +Re cosφ
(
f [v] + [Fνλ]

)
. (5.23)

Integrating vertically over the atmospheric column, we have,

1

Re cosφ

∂

∂φ

∫ ps

0
[vMr] cosφ dp =

∫ ps

0

∑
i

Φi
E − Φi

W dp+

∫ ps

0
Re cosφ[Fνλ] dp . (5.24)

where we have assumed u and v are zero at the surface, and
∫ ps

0 [v] dp is zero by mass
conservation.

The above equation is the more general counterpart of (5.20). It states that, in steady
state, the divergence of the flux of angular momentum out of any latitude band must
be equal to the two terms on the right-hand side. These two terms are both angular
momentum transports into the Earth associated with, from left to right, form drag and
frictional drag,

1

Re cosφ

∂

∂φ

∫ ps

0
[vMr] cosφ dp = Dform +Dfriction. (5.25)

We discuss each of these angular momentum transports below.
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H L

Figure 5.3: Schematic showing streamlines of flow over a mountain. The surface pressure on the
upstream slope is higher than that of the downstream slope. This results on a net force on the
mountain in the downstream direction. By Newton’s Third Law, this is associated with a net force,
termed form drag, on the atmosphere toward the upstream direction.

5.3.1 Surface friction

To evaluate the surface friction term, we recall that the surface friction per unit mass Fνλ
may be written more generally using the viscous stress tensor,

Fνλ =
1

ρ
∇ · P · λ̂

= − 1

ρRe cosφ

{
∂Pλλ
∂λ

+
∂Pλφ cosφ

∂φ

}
− 1

ρ

∂Pλz
∂z

.

At large-scales in the atmosphere, friction is dominated by vertically oriented stresses, and
we may therefore write,

Fνλ = g
∂Pλz
∂p

(5.26)

where we have used hydrostatic balance to convert to pressure coordinates. Integrating
vertically and taking a time and zonal mean, we therefore have that,

Dfriction = gRe cosφ[Ps] (5.27)

where Ps is the frictional stress at the surface.

5.3.2 Form drag

To express the form drag term more simply, it is useful to consider this term as it appears
in (5.21). Taking the vertical integral, we have,

Dform = −
∫ ps

0

1

2π

∫ 2π

0

∂Φ

∂λ
H(ps − p) dλ dp (5.28)

where H is the Heaviside step function, equal to unity when its argument is positive and
zero otherwise, and we have omitted the time average for clarity. Interchanging the order
of integration, we see that H(ps − p) is equal to unity over the interval containing the
integral in pressure, and we may therefore omit it,

Dform = − 1

2π

∫ 2π

0

∫ ps

0

∂Φ

∂λ
dλ dp (5.29)
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Using the Leibniz integral rule3, we have,

Dform = − 1

2π

∫ 2π

0

∂

∂λ

{∫ ps

0
Φ dp

}
− Φs

∂ps
∂λ

dλ . (5.30)

where Φs is the surface geopotential. The first term in the above equation is zero by
periodicity, so that we may write,

Dform =

[
Φs
∂ps
∂λ

]
(5.31)

Finally, using the product rule, we may write this in the slightly more suggestive form,

Dform = −
[
ps
∂Φs

∂λ

]
(5.32)

From the above discussion, we may write the angular momentum budget for a latitude
band as,

1

Re cosφ

∂

∂φ

∫ ps

0
[vMr] cosφ dp = gRe cosφ[Ps]−

[
ps
∂Φs

∂λ

]
. (5.33)

This equation states that there is a balance between the net flux of angular momentum into
a latitude band and its removal at the surface from drag. This drag is of two types.

The first term on the right-hand side corresponds to frictional drag and is proportional to
the frictional stress at the surface. It represents a viscous force between the Earth’s surface
and the air immediately above, and it depends on the difference in velocity between the
surface and the atmosphere immediately above. In general, we would expect the action of
viscous stresses to tend to reduce the surface wind.

The second term on the right-hand side corresponds to form drag between the surface
and atmosphere. Form drag is related to the difference in pressure between the western
slopes and eastern slopes of the topography in a given latitude circle. If the pressure is
higher on the western slopes, the atmosphere is pushing the Earth in the direction of its
rotation (eastward), and, by Newton’s Third Law, the Earth is imparting westward angular
momentum to the atmosphere. In general, one would expect the pressure to be higher on
the windward side of a mountain than the leeward side (Fig. 5.3), and form drag therefore
tends to act against the near surface wind.

5.3.3 Angular momentum budget and the midlatitude westerlies

As already hinted at above, drag between the atmosphere and surface is a function of the
relative motion between these two bodies, that is, it is a function of the surface wind.

3This rule states that d
dt

∫ b(x)
0

f(x, t) dt = f(x, b(x))b′(x) +
∫ b(x)
0

f ′(x, t) dt.
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Figure 5.4: Latitude-pressure schematic of the extratropical angular momentum budget and its
influence on the circulation. Arrows represent angular momentum fluxes and colours represent con-
tours of the angular momentum flux divergence (red) and convergence (blue). Grey lines represent
the overturning streamfunction, and ⊗ and � symbols represent surface winds into and out of the
page, respectively.

Assuming the viscous stress tends to reduce this relative motion, then, in regions where
the surface wind is westerly, the Earth is exerting an eastward frictional torque on the
atmosphere, and the atmosphere is exerting a westward frictional torque on the Earth.
There is therefore a transport of angular momentum from the atmosphere to the surface.
Similarly, when the background flow is westerly, one would expect the surface pressure to
be higher on the western slopes of topography than on the eastern slopes, also implying a
westward acceleration of the atmosphere and a transport of angular momentum from the
atmosphere to the Earth.

The above discussion suggests that westerly winds can only be maintained against drag in
the presence of a flux of angular momentum from the atmosphere to the surface. By (5.33),
this requires a convergence of angular momentum within the atmosphere. We have thus
constructed an explanation for the pattern of surface winds plotted in 1.7: where there is
a net convergence of angular momentum in the atmospheric column, there will be surface
westerlies. Where there is a net divergence, there will be easterlies.

Combining the results of this section, we have a powerful set of relationships tying the gen-
eral circulation in the extratropics to the angular momentum budget (Fig. 5.4). Regions of
convergence of angular momentum (midlatitudes) correspond to equatorward zonal-mean
flow in the free troposphere. This implies an overturning circulation (the Ferrel Cell) that
can only be closed in the boundary layer, where frictional torques are able to balance the
Coriolis acceleration. The implied frictional torques require zonal-mean surface westerlies
in regions of angular momentum convergence and easterlies elsewhere. The atmospheric
transport of angular momentum producing these circulations is primarily accomplished
by eddies, both transient, and to a lesser extent, stationary. To understand the Ferrel
Cell, and the pattern of surface winds we must therefore understand the mechanisms that
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Figure 5.5: Monthly fractional variations in relative angular momentum M estimated from the
NCEP-DOE reanalysis (red; right axis), and daily (light blue) and monthly (dark blue) variations
in the length of the day (relative to 86 400 seconds) taken from the International Earth Rotation
and Reference Systems Service (IERS) Earth Orientation Parameter C01 dataset (left axis).

produce these angular momentum transports. This will be the subject of the next two
chapters.

5.4 The global angular momentum cycle

To finish this chapter, we will consider the angular momentum budget of the entire global
atmosphere. Taking (5.7), integrating over the entire globe and following a procedure
similar to that above, we may derive the global angular momentum budget,

dM
dt

=

∮
globe

Re cosφ

{
gPs −

ps
Re cosφ

∂Φs

∂λ

}
dS . (5.34)

where

M =

∮
atmosphere

Mr dV . (5.35)

Equation (5.34) simply expresses a balance between the rate of change of angular momen-
tum of the atmosphere and the frictional torques that transfer angular momentum between
the Earth and the atmosphere. In particular, the global angular momentum budget states
that, in steady state, the net frictional torque on the atmosphere must be zero. This im-
plies, for example, that the surface winds over the Earth cannot be everywhere westerly or
easterly. Moreover, if we assume that the sum of frictional drag and form drag are linearly
related to the surface winds, the mean surface wind, averaged over the globe, must be
zero. In reality, the frictional torques on the atmosphere are not a linear function of the
winds, but nevertheless, the steady-state angular momentum budget implies that regions
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of westerly winds must be roughly compensated by regions of easterlies over the Earth’s
surface.

In actual fact, the atmospheric angular momentum budget is not in perfect balance, but
it is exchanging angular momentum with the solid Earth. This exchange is expressed by
a speeding up or slowing down of the Earth’s rotation that causes a change in the length
of the day of a few milliseconds–large enough to be measurable. Such exchanges of an-
gular momentum between the Earth and atmosphere occur on timescales from days, to
seasonal and interannual timescales (associated with, e.g., the El Niño-Southern Oscilla-
tion). Indeed, estimates of the length of day and atmospheric angular momentum are
highly correlated on timescales from months to years (Fig. 5.5).

Note that, since the northern hemisphere has the larger seasonal cycle in winds and tem-
perature, the angular momentum of the atmosphere peaks in Boreal winter, when the
northern hemisphere jet is strongest. This means that, for citizens of the southern hemi-
sphere, not only are there more daylight hours in summer, the days themselves are slightly
longer!

The length of day changes associated with exchanges of angular momentum between the
Earth and the atmosphere occur in addition to the much smaller secular change in the
length of the day that is a result of the Moon’s tidal pull on the Earth.
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Chapter 6

The maintenance of a barotropic
jet

In the previous chapter we highlighted the importance of the angular momentum budget
for understanding relationships between the eddies and the mean flow in the extratropical
atmosphere. In particular, we described how the pattern of eddy momentum fluxes is a key
determinant of the meridional overturning circulation and zonal-mean surface winds. But
what determines this pattern of eddy fluxes? This is the question we attempt to answer
in this chapter. To do so, we consider, rather than angular momentum flux, the closely
related quantity of the vorticity flux.

6.1 Vorticity and circulation

The vorticity ζ of the flow is a vector quantity defined as the curl of the velocity,

ζ = ∇× u (6.1)

In geophysical fluid dynamics, the component of the vorticity in the local vertical direction
is of particular interest, which we simply refer to as ζ,

ζ = ζ · ẑ =
1

Re cosφ

{
∂v

∂λ
− ∂u cosφ

∂φ

}
(6.2)

6.1.1 The vorticity equation

We may derive a governing equation for vorticity (called the vorticity equation) using the
u- and v-momentum equations (2.26a) & (2.26b). For simplicity, we will initially consider
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an inviscid, homogenous fluid (in which the density ρ = ρ0 is constant). Under these
conditions, the momentum equations may be written,

Du

Dt
= fv +

uv

Re
tanφ− 1

ρ0Re cosφ

∂p

∂λ
, (6.3)

Dv

Dt
= −fu− u2

Re
tanφ− 1

ρ0Re

∂p

∂φ
, (6.4)

(6.5)

where f = 2Ω sinφ. To derive the vorticity equation, we will first rearrange the momentum
equations in a more convenient form.

Consider the meridional flux of vorticity,

vζ =
v

Re cosφ

{
∂v

∂λ
− ∂u cosφ

∂φ

}
=

1

Re cosφ

∂

∂λ

(
v2

2

)
+
uv sinφ

Re cosφ
− v

Re

∂u

∂φ
.

Rearranging the above equation for the meridional advection (the last term on the right-
hand side) and substituting this into the defintion of Du

Dt , we may write the Lagrangian
derivative of u as,

Du

Dt
=
∂u

∂t
+

1

Re cosφ

∂

∂λ

(
u2 + v2

2

)
− vζ +

uv tanφ

Re
. (6.6)

Substituting this into the u-momentum equation, we have,

∂u

∂t
− v (f + ζ) = − 1

Re cosφ

∂

∂λ

(
u2 + v2

2
+

p

ρ0

)
. (6.7)

By a similar procedure, we have for v,

∂v

∂t
+ u (f + ζ) = − 1

Re

∂

∂φ

(
u2 + v2

2
+

p

ρ0

)
. (6.8)

Taking
1

Re cosφ

{
∂

∂λ
(6.8)− ∂

∂φ
cosφ(6.7)

}
,

we have, with some rearrangement of terms,

∂ζ

∂t
+

u

Re cosφ

∂

∂λ
(f + ζ) +

v

Re

∂

∂φ
(f + ζ) +

f + ζ

Re cosφ

{
∂u

∂λ
+
∂v cosφ

∂φ

}
= 0. (6.9)
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Which gives us the vorticity equation for a inviscid, homogenous fluid,

D(f + ζ)

Dt
= −(f + ζ)∇h · uh. (6.10)

The quantity ζa = f + ζ is the absolute vorticity, equal to the sum of the planetary
vorticity f and the relative vorticity ζ. Consider a single layer of fluid of depth H. By
mass continuity, the flow must be horizontally non divergent ∇h ·uh = 0, and the absolute
vorticity is conserved,

D(f + ζ)

Dt
= 0. (6.11)

Note that, for a fluid at rest, ζa = f , which increases monotonically with latitude. Fur-
thermore, at mid and high latitudes, f >> ζ, and thus for any realistic flow we expect
∂φζ > 0.

6.1.2 Kelvin’s circulation theorem

The final piece of machinery we need for our analysis is Kelvin’s circulation theorem. Con-
sider the integral of the vorticity over a material volume Vt for our single layer, homogenous
fluid,

Γ̂(t) =

∮
Vt

(f + ζ) dV (6.12)

Since the density is assumed to be constant, the volume of fluid parcels is conserved, and
we may apply Reynold’s transport theorem (2.19), to move the time derivative inside the
integral,

dΓ̂

dt
=

∮
Vt

D(f + ζ)

Dt
dV = 0, (6.13)

where the last equality arises from the vorticity equation. For our fluid of constant depth,
we may also write,

Γ̂(t) = H

∮
At

(f + ζ) dA, (6.14)

where H is the depth of the fluid and At is the horizontal area of the material volume. By
Stokes’ theorem, we then have,

Γ̂(t) = H

∮
∂At

ui · dr, (6.15)

where ∂At is the boundary of At, and ui is the velocity in an inertial frame. The quantity
Γ = Γ̂/H is an integral of the velocity along a closed material path of the flow and is known
as the circulation. By (6.13), the circulation is conserved for our single layer homogenous
fluid.
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Figure 6.1: Schematic showing material contour ∂At that begins as a latitude circle at φS bounding
the polar cap (blue line) and at some later time becomes deformed by disturbances that propagate
from the stirred region (red line). The deformation results in a net flux of vorticity into the polar
cap, reducing the zonal-mean wind at φS . A similar argument can be made for a latitude north of
the stirred region φN . Adapted from Vallis (2017).

6.2 Irreversible mixing and vorticity fluxes

Let’s apply Kelvin’s circulation theorem to a material surface At that initially corresponds
to a “polar cap” up to a latitude φS as shown in Fig. 6.1. Since the material path ∂At is
initially simply a latitude circle, we have that the initial circulation ΓiφS is given by,

ΓiφS =

∫
φ<φS

(f + ζ) dA = −
∫ 2π

0
(uφS + ΩRe cosφ)Re cosφ dλ

= 2πRe cosφ[uφS ] + ΩR2
e cos2 φ,

where we have once again used Stokes’ theorem. The negative sign comes about because,
in the southern hemisphere, the boundary integral is performed east-to-west following the
right-hand rule for relating surface integrals to line integrals.

Suppose that the atmosphere is initially at rest, and at some time we begin to stir the fluid
at some latitude equatorward of φS in such a way that no net vorticity is supplied to the
fluid. The stirring will create disturbances in the flow which will propagate to the latitude
φS , deforming the material contour ∂At. In our non-divergent single-layer fluid, we have
that:

1. the total area encompassed by the contour must remain fixed by mass conservation;
at some longitudes the contour will move equatorwards of φS , at others it will move
poleward;

2. air parcels conserve their vorticity as they are advected by the flow;
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3. at the initial time, the fluid is at rest, and therefore absolute vorticity increases
toward the north.

These three properties imply that the deformation of the material contour advects high
vorticity air into the polar cap and low vorticity air out of it. That is, if we calculate a
new path integral around a latitude circle, ΓfφS , we have that,

ΓfφS > ΓiφS , (6.16)

which directly implies that,
[ufφS ] < [ui]φS . (6.17)

That is, the zonal-mean velocity at the latitude φS has been reduced!

Some time later, we might imagine that the flow returns to its original position reversibly. in
this case, the zonal velocity would revert to its initial value. However, if instead we suppose
that there some irreversible mixing occurs (e.g., the vorticity contour ∂At overturns), we
might expect that the vorticity transport is also irreversible, and that there is a net flux of
vorticity through the latitude φS .

In summary, the stirring equatorward of φS has produced a deceleration of the flow over
the polar cap. Nothing in this argument is specific to the latitude φS . In particular, we
could pick a different latitude, φN that is to the north of the stirred region. Applying
Kelvin’s circulation theorem to this latitude (Fig. 6.1), and with a careful application
of the right-hand rule, one finds that the zonal wind north of the stirred region is also
reduced.

We have shown that stirring that produces disturbances that propagate away from their
source and then decay irreversibly tend to decelerate the flow in the regions in which they
produce irreversible mixing. By conservation of angular momentum, we may further argue
that the stirred region itself must experience a westerly acceleration. That is, localised
stirring produces westerly winds!

The argument above shows how a jet can form from eddy motions on a rotating planet.
Eddies forming in one region produce a momentum flux that converges momentum towards
their source. This model may be thought of as analogous to the midlatitude upper tro-
posphere. In our barotropic example, however, these eddies are externally imposed, while
in Earth’s atmosphere, the eddies are driven by baroclinic instability as a result of the
strong temperature gradients present in midlatitudes. In turn these temperature gradients
are related to the eddy fluxes in a way that we will attempt to make sense of in chapter
7.

In the meantime, we continue within a barotropic framework, but we analyse in more
detail how the momentum fluxes implied by our vorticity-mixing example are actually
produced.
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6.3 Momentum transport by Rossby waves

6.3.1 Dynamics of Rossby wave momentum transport

We now consider the momentum transport produced by propagating Rossby waves. For
simplicity, we stick with the horizontally non-divergent single-layer fluid above. Consider
again the vorticity equation, this time adopting the tangent-plane approximation for sim-
plicity,

∂ζ

∂t
+ u

∂ζ

∂x
+ v

(
∂ζ

∂y
+ β

)
= 0, (6.18)

where β = df / dy is the meridional gradient of the Coriolis parameter. Our discussion in
the previous section was rather general, and we considered the vorticity equation in its full
nonlinear form. However, it is useful when examining mechanisms to consider linearised
dynamics. To this end, we linearise the above equation about a base state [u] = ([u], 0),
where we initially assume that the zonal- and time-mean zonal wind is independent of
latitude. The linearised vorticity equation may be written,

∂ζ†

∂t
+ [u]

∂ζ†

∂x
+ βv† = 0, (6.19)

where the superscript † refers to deviations from the time and zonal mean. Since the flow
is non divergent, we may define a perturbation streamfunction Ψ, where,

u† = −∂Ψ

∂y
,

v† =
∂Ψ

∂x
,

The vorticity may be written in terms of the streamfunction,

ζ† =
∂v†

∂x
− ∂u†

∂y
= ∇2Ψ, (6.20)

allowing the linearised vorticity equation to be written purely in terms of the streamfunc-
tion,

∂

∂t
∇2Ψ + [u]

∂

∂x
∇2Ψ + β

∂Ψ

∂x
= 0. (6.21)

We now search for wave-like solutions to the above equation of the form,

Ψ(x, y, t) = A<{exp(i(kx+ ly − ωt))} , (6.22)

= A cos(kx+ ly − ωt)
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Figure 6.2: Fluxes of momentum (grey arrows) and wave activity (black arrows) produced by a
localised source of Rossby waves.

where A is the wave amplitude, k and l are the zonal and meridional wavenumbers, ω is
the frequency and <{} refers to the real component. For this plane wave form, we have
that,

u†v† = A2<{−il exp(i(kx+ ly − ωt))}<{ik exp(i(kx+ ly − ωt))}
= −A2kl sin2(kx+ ly − ωt).

Taking the zonal or time average over one period, we have,

[u†v†] = −A
2kl

2
. (6.23)

Thus the momentum flux averaged over the wave is nonzero and depends on the meridional
and zonal wavenumbers. Note that we have not used the vorticity equation to derive (6.23),
rather, (6.23) is a general property of plane waves described by (6.22).

Now, let us calculate the dispersion relation for waves governed by (6.21). Substituting
the plane wave solution into (6.21), we have,

− (k2 + l2)(−ω + k[u]) + kβ = 0. (6.24)

Rearranging for the frequency, we have,

ω = k[u]− kβ

(k2 + l2)
, (6.25)

which is the familiar barotopic Rossby wave dispersion relation in a flow with mean zonal
wind [u]. We may also calculate the meridional group velocity cgy as,

cgy =
∂ω

∂l
= kl

{
2β

(k2 + l2)2

}
. (6.26)

The group velocity gives the velocity at which energy (actually wave activity) is propagated
by a wave. Since the term in curly braces in the above equation is positive definite (β is
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Figure 6.3: The momentum transport associated with eddies that have “tilted troughs/ridges”.
Black lines represent contours of geopotential anomaly Φ∗ and grey arrows represent anomalies of
the horizontal winds (u∗, v∗) for idealised eddies in which the trough axes are tilted positively (red)
or negatively (blue). Considering the sign of u∗ and v∗ for each eddy leads to the conclusion that
positively tilted trough/ridge axes produce northward eddy momentum flux and negatively tilted
trough/ridge axes produce southward eddy momentum flux.

positive everywhere), the group velocity is proportional to, but opposite in sign to the
momentum flux. This means that the flux of momentum associated with a Rossby wave is
in the opposite direction to the flux of wave activity!

In particular, we might imagine a situation in which a group of Rossby waves form at a
latitude φ0 and propagate both northwards and southwards (Fig. 6.2). As wave energy
moves away from the Rossby wave source, momentum is converged toward it. As in our
nonlinear example above, momentum is converged in the source region of the disturbances!
A localised source of Rossby waves will therefore produce a convergence of (angular) mo-
mentum toward the source. Such a momentum convergence provides a mechanism for
maintaining westerly winds through the depth of the atmosphere, that is, a mechanism to
maintain a barotropic jet.

6.3.2 Kinematics of momentum transport

We have shown, using both linearised arguments and a rather general argument relating
to vorticity mixing, that localised stirring produces a convergence of momentum within
rapidly rotating flows. But how is this momentum flux effected?

Consider an isolated upper tropospheric eddy characterised by a local extremum in the
geopotential anomaly from the zonal mean Φ∗. Associated with this height extremum,
there is a set of closed contours of Φ∗, and by geostrophic balance, anomalous winds flowing
roughly parallel to these contours. What is the net momentum flux by these winds? If the
eddy is circular, the symmetry of the problem suggests that there will be no net flux of
momentum in any direction. However, if the eddy is elongated to form a trough or ridge
axis, the net momentum flux then depends on the tilt of this axis relative to the meridians.
To see this, consider the left panel in Fig. 6.3, showing an eddy in which the trough axis
is “positively” tilted. West of the trough axis, u∗ < 0 and v∗ < 0 implying u∗v∗ > 0. To
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Figure 6.4: Daily-mean 200 hPa height anomaly for 29 May 2008 over the southern hemisphere.
Anomaly is taken from the annual and zonal mean and the contour interval is 50 m. Trough and
ridge axes with positive (red) and negative (blue) tilt are marked subjectively to guide the eye.

the east of the trough axis, u∗ > 0 and v∗ > 0 also implying that u∗v∗ > 0. Averaged over
the eddy, we therefore have that [u∗v∗] > 0, there is a net northward flux of momentum
by the eddy!

Similar reasoning can be used to show that eddies with negative tilt have a southward
associated momentum flux (Fig. 6.3, right panel). Note that this does not depend on
the sign of the geopotential height anomaly; whichever direction the winds rotate, it is the
orientation of the trough/ridge axis that determines their meridional momentum flux.

Given the observed eddy momentum fluxes in the atmosphere are dominated by poleward
transport except in polar regions (Fig. 5.1), one would expect most eddies in the atmo-
sphere to have negative tilted trough/ridge axes, except perhaps near the poles, where
positive tilted trough/ridge axes may dominate. Indeed, these tilts are even observed in
single daily-mean snapshots of the upper tropospheric geopotential height (Fig. 6.4). Most
of the trough/ridge axes identified on Fig. 6.4 are negatively tilted, and those that are
positively tilted tend to be poleward of 60◦S.

Of particular interest on Fig. 6.4 are the three anomalies of geopotential height over the
south Atlantic, extending from Argentina to southern Africa. This pattern is characteristic
of a Rossby wave train. Given the northward extension of these anomalies as one moves
east, we may identify this wavetrain as having positive k and l, and therefore northward
group velocity, and a southward momentum flux. This connects our kinematic discussion
with the dynamic one of the previous section; a Rossby wave produces northward momen-
tum fluxes by developing a negative tilt in the trough axes of its associated anomalies.
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6.4 Rossby wave propagation

In the previous section we saw that a barotropic jet may be maintained when there exists
a localised region of eddy generation from which eddies propagate meridionally, decaying
remotely from their source. We now consider what governs the propagation of these eddies,
by again appealing to linear Rossby wave dynamics.

Consider again the dispersion relation for barotropic Rossby waves (6.3.1). Solving for the
meridional wavenumber l, we have,

l2 =
β

[u]− c
− k2, (6.27)

where c = ω/k is the zonal phase speed. When l2 > 0, l is real, and the vorticity equation
admits wave-like solutions in the y-direction. When l2 < 0, l is imaginary, and the solutions
are said to be evanescent. Meridional propagation of Rossby waves therefore requires that
l2 > 0. A necessary condition for this is that,

[u]− c > 0. (6.28)

This implies that the Doppler-shifted phase speed of the waves must be to the west. Or,
put another way, individual troughs and crests of the wave must propagate to the west
relative to the mean flow.

The condition (6.28) for meridional Rossby wave propagation was derived based on the
assumption that [u] is constant in latitude. However, the principal result carries over to
the case in which [u] varies with latitude. In particular, for slowly varying [u], we may
construct an approximate solution1 to (6.21), of the form,

Ψ(x, y, t) = A(y) exp

{
i

(
kx+

∫
l(y)dy − ωt

)}
, (6.29)

where A(y) ∝ l−
1
2 is a slowly varying wave amplitude, and l(y) is a local solution to the

Rossby wave dispersion relation,

l2(y) =
β̃(y)

[u](y)− c
− k2, (6.30)

with β̃(y) = ∂y(f + [ζ]).

As [u]− c→ 0, the above solution predicts that, consistent with the constant [u] case, the
wave group velocity slows down – the wave cannot propagate any further. At this point,
the linearity assumption breaks down, and we expect nonlinear wave breaking.

1This approximation is referred to as the WKB method, after the initials of (some of) the mathemati-
cians that developed it. Further details may be found in section 13.2 of Vallis (2017).



Rossby wave propagation 95

𝑦

[𝑢](𝑦)

𝑢 − 𝑐

𝑢 , 𝑐)

𝑦*+

𝑦*,

𝑐)

Figure 6.5: Schematic of the propagation of a single Rossby wave packet initiated near the centre
of the jet in the phase speed-latitude plane. The wave propagates both north and south, conserving
its zonal phase speed cx until it reaches the critical latitudes yNc and ySc , where the phase speed
equals that of the mean zonal wind, at which point it breaks and is absorbed. Black and grey
dashed lines give zonal- and time-mean zonal wind before and after the Rossby wave event; the net
effect of the wave is to converge momentum into the jet.

Locations where l → ∞ are known as critical lines, and they correspond to the locations
beyond which no Rossby wave propagation is possible. Waves that approach their critical
latitude are expected to dissipate, either directly through drag or first through nonlinear
wave breaking and eventually via drag.

The conclusion of the above discussion is that Rossby waves propagate meridionally until
they approach a latitude at which the wave phase speed c is equal to the background flow
[u], at which point they break. Given a localised source of waves, this gives us a powerful
heuristic for understanding the distribution of wave activity fluxes (and therefore the eddy
momentum fluxes) in the atmosphere.

6.4.1 Jet maintenance: a conceptual picture

Interaction between a Rossby wave packet and the jet

Let us consider the implications of (6.28). As we have seen, the midlatitude upper tropo-
sphere is characterised by strong eddy motions driven by baroclinic instability (Fig. 1.10)
and a strong westerly jet. From the perspective of the upper troposphere, we may therefore
consider the midlatitudes as a Rossby wave source near the region of strongest temperature
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gradients, which, by thermal wind balance is the centre of the jet. The waves produced
by this baroclinic generation will then propagate, both northward and southward, away
from the jet core. As they do so, the Rossby wave packets will maintain their zonal phase
speed (blue line)2, but, by virtue of moving away from the jet core, the quantity [u] − c
will decrease (Fig. 6.5). Eventually, a given wave packet may reach its critical latitude,
where [u] = c (red lines), at which point it must break and dissipate. The wave activity
associated with this wave packet is transported from the centre of the jet to its flanks, while
the momentum is transported in the opposite direction – from the flanks to the centre of
the jet. The net result of this wave is therefore to accelerate the jet core and decelerate its
flanks – i.e., to sharpen the jet!

The above discussion describes the curious tendency of turbulence in rapidly rotating flows
to transport momentum up the mean gradient. Historically, this was described as the flow
having a negative viscosity (see e.g., Starr, 1968), although that term has largely fallen out
of use. It also hints at a mechanism by which Rossby wave propagation can contribute
to the maintenance of the jet; the wave-induced sharpening of the jet is, by thermal wind
balance, associated with an increase in the meridional temperature gradient. This increase
in the temperature gradient may in turn act to strengthen the baroclinic instability that
was the original source of the Rossby waves.

While we have appealed to thermal wind balance and baroclinic instability in this section,
we have nevertheless largely limited ourselves to a barotropic model of the midlatitude
upper troposphere. To fully describe the feedback hinted at above, however, we must
incorporate baroclinic processes more fully into our discussion. We do so in the next
chapter through the powerful framework of quasigeostrophic theory.

The phase-speed spectrum

Figure 6.5 depicts the interaction of a single Rossby wave packet with the zonal-mean flow.
But how well does this describe the complicated spectrum of real, nonlinear disturbances
that exist in the atmosphere?

To answer this question, we calculate the phase speed spectrum of eddy momentum fluxes in
the upper troposphere K(c, φ) following Randel and Held (1991) (Fig. 6.6). The integral∫ c2
c1
K(c, φ)dc describes, at each latitude, the component of the covariance [u′v′] that is

due to disturbances with phase speeds between c1 and c2. We may define the phase
speed spectrum at any level, but we show the upper troposphere (300 hPa) in Fig. 6.6.
The spectrum K is calculated by finding the space-time spectra of [u′v′], which divides
the covariance into its frequency and wavenumber components, converting the frequency
spectrum to one in terms of the zonal phase speed c = ω/k, and integrating over all
wavenumbers. Finally, the spectrum is multiplied by cosφ so that it is proportional to the

2In spherical geometry, the quantity that is conserved is actually the angular phase speed c
cosφ

.
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Figure 6.6: Phase speed spectrum of meridional eddy momentum flux at 300 hPa for Austral
winter (JJAS) following (Randel and Held, 1991). Arrows give the phase speed spectrum of eddy
momentum fluxes, K(c, φ) cosφ, proportional to the flux of angular momentum at each latitude
owing to eddies with phase speed c, and colours give the divergence of this flux, which is proportional
to the torque exerted by eddies on the mean flow [see (5.7)]. Black line denotes the seasonal- and
zonal-mean zonal wind at 300 hPa and shading denotes plus and minus one daily standard deviation
(shaded).

eddy angular momentum flux.

The phase speed spectrum shows that disturbances responsible for transient eddy momen-
tum fluxes in the atmosphere typically range in phase speed between 0 and 15 m s−1. Such
disturbances produce a strong momentum flux convergence at midlatitudes, and diver-
gences either side. This implies that the midlatitudes are a source of wave activity, which
then decays in the subtropics and subpolar regions. The time- and zonal-mean zonal wind
is plotted on Fig. 6.6, and it marks the critical latitude for a barotropic Rossby wave.
Consistent with linear theory, the momentum flux is close to zero for regions in which
[u] < c, and Rossby waves are evanescent, and the regions for which the momentum flux
is divergent (corresponding to wave dissipation) are close to the critical latitudes.

The phase speed spectrum shows that the conceptual picture describing a single Rossby
wave packet may be usefully applied to the entire spectrum of disturbances in the atmo-
sphere. A range of disturbances with different phase speeds is produced in the core of
the jet (which we presume is a result of baroclinic instability). These disturbances then
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propagate to north and south in the upper troposphere. As they approach their critical
latitudes (whch depends on the mean wind and their phase speed) they begin to break non-
linearly, eventually dissipating. The net result is a flux of momentum toward the source
latitudes which accelerates and sharpens the jet. A sharper jet implies stronger meridional
temperature gradients, which in turn results in increased baroclinic instability.

At first glance, the above feedback process appears as if it should continue indefinitely,
producing frontal collapse at the jet axis. However, our barotropic picture in which eddies
transport angular momentum is only half the story; eddies also transport heat in addition
to momentum. This heat transport alters the temperature field, which itself influences the
winds through thermal wind balance. Making sense of this strong coupling between the
thermodynamic and dynamic fields in rapidly rotating atmospheres is the subject of the
next chapter.



Chapter 7

Eliassen-Palm fluxes and the
transformed Eulerian mean

In the last few chapters, we have focused on the angular-momentum budget and the con-
straints on the flow one may derive from considerations of meridional fluxes of angular
momentum, either through axisymmetric dynamics or more general considerations. How-
ever, on large-scales away from the equator, the flow in Earth’s atmosphere is known to be
close to a state of geostrophic balance; as we have seen in previous chapters such balance
implies a strong relationship between dynamic and thermodynamic fields embodied by the
thermal wind relation. This implies that we cannot think of the zonal winds as independent
of the temperature structure of the atmosphere; these two aspects are strongly coupled. In
this chapter we will introduce a powerful set of methods for understanding how this cou-
pled system behaves, and in particular, how eddies influence the mean flow within fluids
that are close to a state of geostrophic balance.

We begin by introducing the framework we will use which is known as quasigeostrophic
(QG) theory. QG theory is an extremely influential simplification of the governing equa-
tions that is commonly used to analyse extratropical dynamics. Entire books have been
written on QG theory, and we will present a very brief introduction here; the reader is
referred to chapter 5 of Vallis (2017) for further details.

99
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7.1 Quasigeostrophic preliminaries

We begin by considering the equations of motion under the beta-plane approximation and
in pressure coordinates,

∂u

∂t
+ uh · ∇pu+ ω

∂u

∂p
= −∂Φ

∂x
+ fv + Fx, (7.1a)

∂v

∂t
+ uh · ∇pv + ω

∂v

∂p
= −∂Φ

∂y
− fu+ Fy, (7.1b)

∂θ

∂t
+ uh · ∇pθ + ω

∂θ

∂p
=

Q

cpπ
, (7.1c)

∂Φ

∂p
= −α, (7.1d)

∇p · uh +
∂ω

∂p
= 0. (7.1e)

where f = f0 +βy. The first two equations above are the horizontal momentum equations,
the third gives the thermodynamic equation, the fourth gives hydrostatic balance, and the
final equation gives mass continuity.

The quasigeostrophic approximation is valid in fluids that may be considered to be close
to a state of geostrophic balance at the appropriate scale. It is therefore useful to define
the geostrophic velocity ug = (ug, vg, 0), where,

ug = − 1

f0

∂Φ

∂y
, (7.2)

vg =
1

f0

∂Φ

∂x
. (7.3)

Note that, since we have used f0 in the definitions above, the geostrophic wind is non-
divergent,

∇ · ug =
1

f0

{
∂2Φ

∂x∂y
− ∂2Φ

∂x∂y

}
= 0. (7.4)

The quasigeostrophic approximation involves two assumptions,

1. That the velocity is close to its geostrophic value, that is, |uag| << |ug|, where
uag = u− ug. This requires that the Rossby number,

Ro =
U

f0L
<< 1, (7.5)

where U and L are characteristic horizontal velocity and length scales of the flow.
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2. That the atmosphere is strongly stratified. More specifically, we require that the
Burger number,

Bu =
NH

f0L
∼ O(1), (7.6)

where H is the scale height of the atmosphere and N = g
θ
∂θ
∂z is the Brunt Väisälä fre-

quency.

Based on these assumptions, the quasigeostrophic system of equations may be derived by
a formal asymptotic expansion of (7.1) about the small parameter Ro. That is, we may
define a series expansion for the velocity as,

u = u0 + Rou1 +O(Ro2), (7.7)

where u0 is the geostrophic velocity, u1 is the first order correction, and we neglect higher
order terms. Here we do not derive this expansion in detail, and instead we simply present
the results of such a series expansion.

The QG zonal velocity equation is found by replacing all velocities in the equation by their
geostrophic counterparts, except when multiplied by the Coriolis parameter f0. That is,
we have,

∂ug
∂t

+ ug · ∇pug = f0vag + βyvg + Fx, (7.8)

where geostrophic balance has been used to remove the geopotential gradient. A similar
equation is valid for the meridional momentum equation,

∂vg
∂t

+ ug · ∇pvg = −f0uag − βyug + Fy. (7.9)

To derive the QG thermodynamic equation, we define a base state potential temperature
Θ(p), that only depends on pressure, so that,

θ(x, y, p, t) = Θ(p) + θ×(x, y, p, t) (7.10)

where θ× refers to the deviations of the potential temperature from its base state. Our as-
sumption that the Burger number is order unity implies that the atmospheric stratification
is dominated by that of the base state. That is, we have that,∣∣∣∣dΘ

dp

∣∣∣∣ >> ∣∣∣∣∂θ×∂p
∣∣∣∣ . (7.11)

We then neglect ageostrophic advection of the potential temperature anomalies, so that
we may write the thermodynamic equation as,

∂θ

∂t
+ ug · ∇pθ + ωσ =

Q

cpπ
, (7.12)
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where σ = dΘ /dp.

Since the geostrophic velocity is non divergent, the QG continuity equation may be writ-
ten,

∂uag
∂x

+
∂vag
∂y

+
∂ω

∂p
= 0. (7.13)

Equations (7.8), (7.9), (7.12), (7.13) and hydrostatic balance give us the QG system of
equations.

7.2 Forcing of the zonal mean

7.2.1 Zonal-mean QG equations

We now derive a compact set of equations that govern the zonal-mean structure of the
atmosphere in the QG system. We first write the QG zonal momentum equation (7.8) in
flux form,

∂ug
∂t

+
∂u2

g

∂x
+
∂ugvg
∂y

= f0vag + βyvg + Fx, (7.14)

where we have used the nondivergence of the geostrophic velocity. Taking the zonal mean
of the above equation, we have that,

∂[ug]

∂t
= f0[v] + [Fx]−

∂[u∗gv
∗
g ]

∂y
. (7.15)

Here we have divided the velocities into their zonal mean and eddy components, and we
have used the fact that the meridional geostrophic velocity is an exact zonal derivative,
and that the zonal mean of a zonal derivative is zero to note that [vg] = 1

f0
[∂Φ
∂x ] = 0 and[

1
2

∂u2g
∂x

]
= 0.

We may apply a similar procedure to the thermodynamic equation (7.12) to give,

∂[θ]

∂t
+ σ[ω] =

[Q]

cpπ
−
∂[v∗gθ

∗]

∂y
. (7.16)

The zonal mean continuity equation may be derived straightforwardly from (7.13) to
give,

∂[v]

∂y
+
∂[ω]

∂p
= 0, (7.17)

noting that [v] = [vag].
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Finally, we may connect the zonal wind ug to the potential temperature deviation θ by
deriving the thermal wind relation for this system. Consider the equation for hydrostatic
balance,

∂Φ

∂p
= −α (7.18)

Using the ideal gas law and the definition of potential temperature, we have,

∂Φ

∂p
= −Rdθπ

p
(7.19)

Taking the y-derivative of the above equation and substituting the definition of the zonal
geostrophic velocity, we have,

∂ug
∂p

=
Rdπ

f0p

∂θ

∂y
(7.20)

Taking the zonal mean, we have,

∂[ug]

∂p
=
Rdπ

f0p

∂[θ]

∂y
(7.21)

Equations (7.15), (7.16), (7.17) and (7.21) gives a set of four equations in the four unknown
zonal mean quantities [ug], [θ], [v] and [ω]. These equations may be solved given the eddy
forcing terms [u∗gv

∗
g ] and [v∗gθ

∗], the zonal-mean frictional force [Fx] and diabatic heating
[Q], and the parameter σ.

Some remarks on the QG equation system

The zonal-mean QG system is a rather remarkable set of equations. First, note that
the only prognostic variables are the zonal-mean zonal wind and potential temperature
perturbation. That is, [v] and [ω] are diagnostic variables within this framework. This
is because [v] and [ω] have no geostrophic component and are entirely ageostrophic. In
particular, [ω] may be diagnosed by requiring that the vertical velocity is sufficient to
adiabatically warm or cool the atmosphere to maintain thermal wind balance at all times.
The zonal-mean meridional velocity may then be diagnosed from mass continuity.

In deriving the QG system, we have effectively filtered out the gravity waves that ordinarily
act to adjust the atmosphere toward geostrophic balance (as in the Rossby adjustment
problem). Rather, the QG system enforces thermal wind balance (and mass continuity) at
all instants. It should also be noted that in our QG equation set, the vertical eddy fluxes
do not appear. This is a consequence of QG scaling, the vertical velocity is small (of order
Rossby number), and thus its effects may be neglected, except where it multiplies the mean
stratification.
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While useful, the QG system has a number of limitations that should be mentioned. Firstly,
the assumptions of low Rossby number required for QG to be valid are not satisfied in the
deep tropics; QG is a model of the extratropical circulation.

Secondly, the QG equations are not closed, in the sense that one must know the forcing
terms on the right hand side, or parameterise them in terms of the zonal-mean flow. This
is particularly challenging for the diabatic heating rate, since latent heating by clouds is
highly coupled to the flow itself in a highly nonlinear way (upward motion is associated
with latent heating, but downward motion is not associated with an equivalent amount of
latent cooling).

Thirdly, a limitation of QG that is not often discussed is that one must specify the mean
stratification a priori. In reality, the stratification of the atmosphere in extratoprical
regions is determined by the effect of large-scale eddies1, and so a full theory would include
a prediction of the mean stratification σ.

Finally, we note that QG is simply the first order solution to small Rossby number dynamics
in the atmosphere; one may derive higher-order solutions that take into account terms of
order Ro2. One such extension, called semi-geostrophy (see Hoskins, 1975), predicts the
existence of discontinuities in the flow that appear in finite time; it predicts the existence
of fronts! At such locations, the assumptions of small Rossby number flow break down.
This implies that, given a flow that satisfies the assumptions of QG, evolution of the flow
will eventually lead to a breakdown of this assumption.

Surprisingly, given the number of caveats above, QG theory is one of the most powerful
conceptual tools in dynamical meteorology, and our understanding of the extratropical
atmosphere and the interaction between the zonal-mean flow and eddies would be much
poorer without it.

7.2.2 Perturbation from a balanced state

Let us consider how the zonal-mean QG system is affected by eddy forcing. Suppose we
have a statistically steady state in which

∂[ug]

∂t
=
∂[θ]

∂t
= 0. (7.22)

1A general theory for the extratropical stratification is still lacking, although there are a number of
ideas in the literature (see e.g., Juckes, 2000; Schneider and O’Gorman, 2008; Jansen and Ferrari, 2012).
For the extratropics, we therefore have a well-developed theory for balanced dynamics, but no full theory
for the mean thermodynamic state. This is somewhat of the opposite situation to that of the tropics, where,
as mentioned in chapter 3, the thermal stratification is known to be controlled by convection, but we lack
a compelling theory for balanced dynamics (see, e.g., Sobel et al., 2001; Raymond et al., 2015, for some
attempts at constructing such a theory in the tropics).



Forcing of the zonal mean 105

Now let us perturb this state with a vertically propagating wave. We will show later that
such a wave will produce a meridional heat flux, but no meridional momentum flux, that
is, the perturbation has the properties

∂[v∗gθ
∗]

∂y
6= 0,

∂[u∗gv
∗
g ]

∂y
= 0.

Examining the momentum equation, we see that the momentum equation is unaffected
by this wave, and so we might expect no change in the zonal wind due to the wave,
i.e., ∂tug = 0. On the other hand, the meridional heat flux is a forcing to the potential
temperature equation, and so we would expect ∂tθ 6= 0. But by thermal wind balance, if
either ug or θ changes, the other has to evolve in tandem to maintain thermal wind balance!
What is going on here?

The mechanism by which the QG system maintains thermal wind balance is through the
ageostrophic mean circulation ([v], [ω]). A meridional eddy flux of heat with non-zero diver-
gence ∂y[v

∗
gθ
∗] induces a mean ageostrophic circulation that in turn affects the momentum

equation through the Coriolis acceleration. More specifically, consider the case in which the
heat flux through the midlatitudes is suddenly increased. All else being equal, we would
expect such an increase to act to reduce the temperature gradient between subrtropical
and subpolar latitudes. In order to maintain thermal wind balance, however, this reduction
in the temperature gradient must be accompanied by a reduction in the wind shear. In
the QG system, this reduction in wind shear is achieved by an induced equatorward flow
in the upper atmosphere, and a poleward flow in the lower atmosphere, which produces a
Coriolis acceleration that increases the zonal wind at low levels and decreases it at upper
levels. The induced meridional circulation is driven mechanically by the requirement for
the atmosphere to maintain thermal wind balance; it may or may not be thermally di-
rect, and in the case of the Ferrel cell, the mean meridional circulation is indeed thermally
indirect.

Clearly, in a baroclinic atmosphere, we cannot consider eddy heat and momentum fluxes
separately as we did in the previous chapter; they act in tandem and each affects both the
thermal structure and the zonal wind structure.

7.2.3 Non-acceleration theorem

How can we make sense of the eddy influence on the mean circulation within the QG
framework? Consider steady, non-dissipative, adiabatic flow. Under such conditions, time
derivatives are zero, and friction and diabatic heating are absent. The equations for the
zonal-mean zonal wind and potential temperature perturbation (7.15) and (7.16) then
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become diagnostic equations for the overturning circulation,

f0[v] =
∂[u∗gv

∗
g ]

∂y
, (7.23)

[ω] = − 1

σ

∂[v∗gθ
∗]

∂y
. (7.24)

Substituting these expressions into the zonal-mean continuity equation, we have,

∂

∂y

{
∂

∂y

(
−

[u∗gv
∗
g ]

f0

)
+

∂

∂p

(
[v∗gθ

∗]

σ

)}
= 0. (7.25)

Integrating meridionally, we find that the term in curly brackets is independent of latitude.
Consider the behaviour of the function in curly brackets at the pole. Since at the pole
v = [v] = v∗ = 0, we have that,

∂

∂p

(
[v∗gθ

∗]

σ

)
= 0. (7.26)

Furthermore, by (7.23), the term ∂y
(
−[u∗gv

∗
g ]
)

is also zero. This implies that the term in
curly brackets in (7.25) is zero at the pole, and, by (7.25) itself, this term must be zero at
all latitudes.

The above conclusion may be expressed concisely as,

∇p · FEP = 0. (7.27)

where FEP is the Eliassen-Palm flux

FEP = −[u∗gv
∗
g ]j +

f0[v∗gθ
∗]

σ
k (7.28)

where j and k are unit vectors in the meridional (y) and vertical (pressure) directions,
respectively2.

The above derivation has shown that for non-dissipative, adiabatic flow, if the EP flux is
zero, there is a trivial solution to the QG governing equations in which ∂t[ug] = ∂t[θ] = 0
– eddies do not accelerate the mean flow. This is known as the nonacceleration theo-
rem.

Alternatively, we may state that, in order for an adiabatic non-dissipative flow to be steady,
the divergence of the Eliassen-Palm flux must be zero. When these conditions are satisfied,
eddy fluxes of heat and momentum are balanced by the meridional overturning circulation

2Note that here we are defining the pressure-coordinate version of the divergence of a vector field
F = Fxi+Fyj+Fpk as ∇p ·F = ∂xFx + ∂yFy + ∂pFp. This is simply a notational convenience; in a proper
coordinate transform, the divergence should be invariant.
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represented by [v] and [ω]. Conversely, when ∇p ·F 6= 0, the overturning circulation cannot
balance the eddy fluxes, and an acceleration of the zonal flow must result.

More generally, when diabatic heating and friction are included, the divergence of the EP
flux represents the net effect of eddies on the mean flow. If the EP flux is nonzero, eddies
are causing an acceleration of the zonal-mean zonal wind. This acceleration either must
be balanced by diabatic heating or friction, or it must cause a net change to the zonal
wind.

7.3 The Eliassen-Palm flux

The EP flux shows up in a number of surprising ways when analysing the extratropical
general circulation. In this section, we demonstrate the fundamental importance of EP
fluxes to extratropical dynamics. We first explicitly show that the EP flux represents the
net effect of eddies on the mean flow by putting the governing equations into a more illu-
minating form called the transformed Eulerian Mean (TEM). Next we show the connection
between EP fluxes and the dynamics of potential vorticity. Finally, we show how EP fluxes
are related to wave propagation in linearised dynamics. These tools will allow us to inter-
pret the eddy-mean flow interactions in the midlatitude atmosphere, and they will provide
a solid basis on which to reason about jet formation and jet maintenance in baroclinic
fluids like the atmosphere.

7.3.1 the Transformed Eulerian Mean (TEM)

Let us define a streamfunction of the meridional overturning circulation χ by,

[v] =
∂χ

∂p
, (7.29a)

[ω] = −∂χ
∂y
. (7.29b)

The form of the streamfunction automatically implies the flow satisfies the zonal-mean
continuity equation,

∂[v]

∂y
+
∂[ω]

∂p
= 0. (7.30)

Expressing the zonal-mean thermodynamic equation in terms of the streamfunction, we
have,

∂[θ]

∂t
− σ

{
∂χ

∂y
− ∂

∂y

[v∗θ∗]

σ

}
=

[Q]

cpπ
. (7.31)

where we have taken the eddy forcing term to the left-hand side. We now make what
appears to be a somewhat arbitrary definition of

χ̃ = χ− [v∗θ∗]

σ
, (7.32)
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where χ̃ is known as the “transformed” streamfunction. In analogy to (7.29), we may
define “velocities” by,

[ṽ] =
∂χ̃

∂p
, (7.33a)

[ω̃] = −∂χ̃
∂y
. (7.33b)

The overturning circulation defined by (ṽ, ω̃) is known as the residual overturning.

The benefit to the above definition is that it casts the thermodynamic equation in a par-
ticularly simple way,

∂[θ]

∂t
+ σ[ω̃] =

[Q]

cpπ
. (7.34)

In particular, in steady state, the residual pressure velocity is balanced directly by diabatic
heating, and there is no explicit eddy forcing3. The residual velocity is therefore upwards
where the atmosphere is being heated, and downwards where the atmosphere is being
cooled, as one would expect from a thermally direct circulation (see below).

The simplicity we have produced in the thermodynamic equation must be paid for in the
zonal momentum equation. Applying our definition of χ̃ to (7.15), we have,

∂[ug]

∂t
− f0[ṽ] = [Fx]−

∂[u∗gv
∗
g ]

∂y
+ f0

∂

∂p

(
[v∗gθ

∗]

σ

)
. (7.35)

Now the momentum equation has not one, but two explicit eddy terms. However, some
progress has nevertheless been made, as we may express the eddy forcing in terms of the
Eliassen-Palm flux divergence,

∂[ug]

∂t
− f0[ṽ] = [Fx] +∇p · FEP . (7.36)

Equations (7.34) and (7.36) give the thermodynamic and momentum equations in the
transformed Eulerian mean (TEM) form. This form is useful, because it confines the
explicit eddy forcing terms into one equation. From these equations, it is clear that the
effect of eddies on the zonal-mean flow is governed by the divergence of the EP flux.

The TEM equations also contain the meridional overturning circulation in its residual form.
The residual overturning, while appearing rather arbitrary at first , has some very useful
properties. In particular, the residual vertical velocity ω̃ corresponds to the diabatically
driven vertical motion. ω̃ is upwards in regions that are diabatically heated and downwards

3Of course, eddies contribute to the zonal-mean heating, particularly when it comes to latent heat
release in clouds.
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Figure 7.1: The annual-mean meridional overturning streamfunction calculated based on NCEP-
DOE reanalysis data for the years 2008-2017. (a) Traditional Eulerian-mean streamfunction Ψ, and

(b) residual streamfunction Ψ̃ = Ψ − 2πRe cosφ [v†θ†]

∂p[θ]
. Solid lines represent clockwise motion and

dashed lines represent anticlockwise motion and the contour interval is 1011 kg s−1.

in regions that are diabatically cooled. As a result, the residual circulation is thermally
direct, even at midlatitudes where the Eulerian mean circulation is thermally indirect
(the Ferrel Cell). Indeed, the residual streamfunction is comprised of a single cell in each
hemisphere, with rising motion in the tropics and descent in subpolar regions, although
there is also a notable dip in the streamlines in the subtropics, roughly coinciding with the
boundary between the Hadley and Ferrel Cells in the Eulerian perspective.

Away from the surface, the residual overturning also approximates the mass-weighted over-
turning circulation in isentropic coordinates (Held and Schneider, 1999), since vertical
motions in isentropic coordinates correspond to diabatic heating or cooling. Near to the
surface, however this similarity breaks down, and in fact the residual overturning does not
close, with the residual streamfunction intersecting the surface. This is because the QG as-
sumptions used to derive the TEM equations break down within the boundary layer.

According to (7.34) and (7.36) the EP flux divergence plays a central role in the dynamics
of the zonal-mean flow in the extratropics. We shall see below that EP fluxes also have a
close relationship to potential vorticity, and they are essential to understand when applying
“PV thinking” to the general circulation.
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7.3.2 Quasigeostrophic potential vorticity (QGPV)

The utility of viewing the extratropical circulation from the perspective of potential vor-
ticity boils down to two properties of potential vorticity within the QG framework; the
conservation principle and the invertibility principle. These two principles are derived
briefly below, after which we discuss their physical interpretation.

Conservation of QGPV

Consider again the QG equation system. Taking ∂y(7.9)− ∂x(7.8), we have,

∂ζg
∂t

+ ug · ∇pζg = −f0

(
∂u

∂x
+
∂v

∂y

)
− βvg +

∂Fy
∂x
− ∂Fx

∂y
, (7.37)

where ζg = ∂xvg − ∂yug is the geostrophic vorticity, and we have used that

∂ug

∂y
· ∇pug −

∂ug

∂x
· ∇pvg =

∂ug
∂y

∂ug
∂x

+
∂vg
∂y

∂ug
∂y
− ∂ug

∂x

∂vg
∂x
− ∂vg
∂x

∂vg
∂y

= ζg

(
∂ug
∂x

+
∂vg
∂y

)
= 0

by the non-divergence of the geostrophic wind. Now, since ∂xu + ∂yv = −∂pω, we may
write the QG vorticity equation,

Dg

Dt
(ζg + f) = f0

∂ω

∂p
+
∂Fy
∂x
− ∂Fx

∂y
, (7.38)

where we have defined the geostrophic derivative,

Dg

Dt
=

∂

∂t
+ ug · ∇p (7.39)

and used that
Dgf
Dt = βvg.

Rearranging the thermodynamic equation (7.12), we may write the pressure velocity as,

ω =
1

σ

{
Q

cpπ
− Dgθ

Dt

}
(7.40)

Multiplying by f0 and taking the vertical derivative, we may write,

f0
∂ω

∂p
= −Dg

Dt

{
∂

∂p

(
f0θ

σ

)}
+

∂

∂p

(
f0Q

cpπσ

)
, (7.41)
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where we have used that,

∂ug

∂p
· ∇pθ = 0

as a result of the thermal wind relation.

Substituting (7.41) into (7.38), we may write a conservation equation for the quasigeostrophic
potential vorticity, q,

Dgq

Dt
=

∂

∂p

(
f0Q

cpπσ

)
+
∂Fy
∂x
− ∂Fx

∂y
, (7.42)

where q is defined,

q = ζg + f +
∂

∂p

(
f0θ

σ

)
. (7.43)

Note that, for frictionless adiabatic flow, the QGPV is conserved following the geostrophic
flow,

Dgq

Dt
= 0. (7.44)

The above equation expresses the conservation principle for QGPV. Note that the advecting
velocities in this equation are the geostrophic winds; QGPV is conserved following the
geostrophic flow, not the total flow.

Invertibility of QGPV

To make the conservation of QGPV a useful principle, we must connect the QGPV to the
variables we care about, the winds and potential temperature. To do so, note that we can
express the geostrophic winds in terms of the geopotential,

ug =
1

f0

∂Φ

∂y
(7.45)

vg = − 1

f0

∂Φ

∂x
, (7.46)

and the vorticity is therefore,

ζg =
1

f0

(
∂2

∂x2
+

∂2

∂y2

)
Φ. (7.47)

Furthermore, the potential temperature may be related to the geopotential through hydro-
static balance (7.19). Rearranging (7.19) we have,

1

S
∂Φ

∂p
=
θ

σ
. (7.48)
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where S = −σRdπ/p. Substituting (7.47) and (7.48) into the definition of the QGPV
(7.43), we have,

q = f +
1

f0

(
∂2Φ

∂x2
+
∂2Φ

∂y2

)
+

∂

∂p

(
f0

S
∂Φ

∂p

)
. (7.49)

Equation (7.49) expresses the QGPV as the solution to an elliptic partial differential equa-
tion in the geopotential Φ. Furthermore, using (7.45), (7.46) and (7.48), the winds and
potential temperature may be deduced directly from the geopotential. Thus, a given dis-
tribution of QGPV, combined with appropriate boundary conditions4 may be “inverted”
by solving (7.49), and all the variables of interest may be derived.

Fig. 7.2 shows an example of such an inversion for a Gaussian anomaly in the PGPV (a
PV ”ball”). The cyclonic QGPV anomaly produces an anomaly in the geopotential height
which is associated with a cyclonic vortex in the geostrophic wind, and a dipole structure
in the potential temperature. Note that the geopotential anomaly extends over a wider
region than the PV anomaly. Indeed, the equation relating the QGPV to the geopotential
is similar to the equation relating an electric charge to the electric field in electrostatics.
This analogy is useful when thinking about the induced circulations associated with isolated
anomalies of PV (see e.g., Hoskins et al., 1985).

PV thinking

The combination of the QGPV conservation principle and its invertibility makes the QGPV
a powerful tool for analysing extratropical circulations. In particular, the QGPV tells us all
we need to know about the flow; given the QGPV distribution, the invertibility principle
tells us that all other quantities of the flow may be calculated, and its evolution my be
determined by the conservation principle, allowing one to determine the future properties
of the flow.

Since the complete description of a QG flow can be encapsulated by the QGPV, this has
led to the widespread adoption of what is known as “PV thinking” when conceptualising
extratropical circulations. This view focuses on the PV distribution and its evolution.
For example, rather than analysing heat advection and momentum advection separately
to determine causal mechanisms influencing the evolution of temperature and winds, one
would analyse the PV and its evolution. The invertibility principle then allows this in-
formation to be translated into information about the winds and potential temperature
distribution.

A QGPV-focussed view automatically accounts for the effects of the induced ageostrophic
overturning circulation that accompanies changes in temperature and wind. Furthermore,

4In particular, potential temperature anomalies at boundaries may be interpreted as δ functions of PV;
see Vallis (2017), section 5.4 for details.
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Figure 7.2: (left) Horizontal and (right) vertical cross sections of the geopotential height anomalies
(black lines; contour interval 4 m) induced by a Gaussian anomaly of cyclonic QGPV with a
maximum magnitude of 2f0, a horizontal standard deviation of 100 km, and a vertical standard
deviation of 60 hPa. In the left panel, arrows give the induced geostrophic winds and colours
give the PV anomaly, while in the right panel, colours give the potential temperature anomaly.
Calculations are performed assuming S = 3× 10−6 m4 s2 kg−2.

as we shall see below, “PV thinking” highlights the importance of the EP flux divergence
through its influence on the PV distribution.

Evolution of the zonal-mean QGPV

Let us consider now how the zonal-mean QGPV evolves in time. For simplicity, we will
start with frictionless, adiabatic flow, for which the QGPV is conserved following the
geostrophic flow. Since the geostrophic wind is non divergent, we may write (7.44) in flux
form as,

∂q

∂t
+
∂ugq

∂x
+
∂vgq

∂y
= 0. (7.50)

Taking the zonal mean, we have,

∂[q]

∂t
= −

∂[v∗gq
∗]

∂y
, (7.51)

where the mean meridional flux is zero since [vg] = 0. This equation states that the zonal-
mean QGPV distribution is forced (for adiabatic and frictionless flow) by the meridional
eddy QGPV flux. But what exactly is the form of this flux? Using the definition of the
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QGPV (7.43), we have,

[v∗gq
∗] =

[
v∗g
∂v∗g
∂x

]
−
[
v∗g
∂u∗g
∂y

]
+ f0

[
v∗

∂

∂p

(
θ∗

σ

)]
. (7.52)

Since the geostrophic wind is non divergent, we may subtract [u∗(∂xu
∗
g + ∂yv

∗
g)] = 0 from

the above equation to give, with some rearrangement,

[v∗gq
∗] =

[
1

2

∂

∂x

(
v∗g − u∗g

)]
−
[
∂

∂y

(
u∗gv
∗
g

)]
+ f0

[
v∗

∂

∂p

(
θ∗

σ

)]
. (7.53)

The first term on the right-hand side is an exact derivative and is therefore zero in the
zonal mean. Furtherore, we may use the product rule on the last term on the right-hand
side to write,

[v∗gq
∗] = −

∂
[
u∗gv
∗
g

]
∂y

+ f0
∂

∂p

(
[v∗θ∗]

σ

)
−
[(

θ

σ

)
∂v∗

∂p

]
. (7.54)

Now, by thermal wind, we have that,

f0
∂vg
∂p

= −Rdπ
p

∂θ

∂x
, (7.55)

implying that the last term on the right-hand side of (7.54) is an exact derivative and
equal to zero in the zonal mean. We therefore have that the eddy QGPV flux may be
written,

[v∗gq
∗] = −

∂
[
u∗gv
∗
g

]
∂y

+ f0
∂

∂p

(
[v∗θ∗]

σ

)
(7.56)

= ∇p · FEP .

The meridional flux of QGPV is given by the Elliasen-Palm flux divergence! This shows
that our transformation of the equations into their TEM form above is far from arbitrary,
but rather it is another aspect of so called “PV thinking”.

7.3.3 EP fluxes and Rossby waves

So far we have shown that the EP flux divergence represents the net effect of eddies on
the mean zonal wind and potential temperature field, and we have shown that the EP
flux divergence is equal to the meridional flux of QGPV. We now show how EP fluxes are
related to wave propagation.

We begin by deriving an equation for a quantity known as the “wave activity”. For the
QG system, we define the wave activity as,

A =
1

2

[q∗2]

∂[q]/∂y
, (7.57)
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where, as in previous sections, the square brackets represent zonal mean and the asterisk
represents a deviation from this mean. The wave activity is given by the eddy enstrophy
q∗2 divided by the mean QGPV gradient. Care must be taken in cases where the QGPV
gradient changes sign, although we will not consider such situations here.

To derive a wave activity equation, we consider again the equation for the QGPV (7.42),
which may be written in flux form,

∂q

∂t
= −∂ugq

∂x
− ∂vgq

∂y
+D (7.58)

where D = ∂p(f0Q/cpπσ) + ∂yFx − ∂xFy represents the effects of non-conservative terms
associated with dissipation and diabatic heating. Taking the zonal mean, we have,

∂[q]

∂t
= −∂[vgq]

∂y
+ [D]. (7.59)

Subtracting the above equation from (7.58) gives

∂q∗

∂t
= −

∂u∗g[q]

∂x
− ∂[ug]q

∗

∂x
−
∂v∗g [q]

∂y
+D∗ (7.60)

where we have used that [vg] = 0. Using the non-divergence of the geostrophic wind, we
may write,

∂q∗

∂t
= −v∗g

∂[q]

∂y
− ∂[ug]q

∗

∂x
+D∗. (7.61)

Multiplying by q∗ and taking the time and zonal average, we may derive an equation for
the enstrophy,

∂

∂t

(
1

2
[q∗2]

)
= −[v∗gq

∗]
∂[q]

∂y
+ [D∗q∗]. (7.62)

Finally, dividing by ∂y[q], gives the governing equation for the wave activity,

∂A
∂t

= −[v∗q∗] +D, (7.63)

where D = [D∗q∗]/∂y[q]. Since the QGPV flux is equal to the divergence of the EP flux,
we have,

∂A
∂t

= −∇ · FEP +D. (7.64)

For conservative flow (D = 0), regions where the wave activity is growing correspond to
EP flux convergence, and regions where the wave activity is decaying correspond to EP
flux divergence (provided the QGPV gradient remains positive).

Equation (7.64) is a rather general equation (we have made no small amplitude assump-
tion for instance), and it shows the connection between the wave activity to the EP flux
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divergence. However, it does not allow a clear interpretation in terms of wave dynam-
ics. For that, we must consider small amplitude disturbances and linearise the QGPV
equation.

As in section 6.3.1, we linearise the QGPV equation about a base state with uniform zonal
flow [u]. Using (7.49) to express the QGPV in terms of the geopotential, we may write
conservation of QGPV as,

(
∂

∂t
+ [u]

∂

∂x

){
∂2Φ∗

∂x2
+
∂2Φ∗

∂y2
+

∂

∂p

(
f2

0

S
∂Φ∗

∂p

)}
+ β

∂Φ∗

∂x
= 0. (7.65)

where Φ∗ is the perturbation geopotential. Assuming a wave-like solution of the form,

Φ∗(x, y, p, t) = A cos {i (kx+ ly +mp− ωt)} (7.66)

we recover the dispersion relation for baroclinic Rossby waves,

ω = [u]k − βk

κ2
(7.67)

where κ2 = k2 + l2 +m2 f
2
0
S . Now, consider the group velocity of such waves. We have, for

the meridional and pressure directions,

cg =
∂ω

∂l
j +

∂ω

∂m
k

=
2βkl

κ4
j +

2βkm

κ4

f2
0

S
k. (7.68)

Recall that the group velocity cg represents the direction in which the wave activity
associated with a given frequency ω and wavenumbers k and l travels. We may also
use geostrophic and hydrostatic balance to recover the perturbation winds and geopoten-
tial,

u∗g =
1

f0

∂Φ∗

∂y
= −Al

f0
sin (kx+ ly +mp− ωt)

v∗g = − 1

f0

∂Φ∗

∂x
=
Ak

f0
sin (kx+ ly +mp− ωt)

θ∗ = − 1

S
∂Φ∗

∂p
=
Am

S
sin (kx+ ly +mp− ωt) .
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Using the above equations, we have that,

[u∗gv
∗
g ] =

A2kl

f2
0

,

[v∗gθ
∗] =

A2km

S

[q∗2] =
A2κ4

f2
0

Furthermore, since we have assumed the mean zonal wind to be uniform, ∂y[q] = β.

Comparing the above equations to (7.68), we note that,

Acg = FEP . (7.69)

This equation suggests a fundamental relationship between the EP flux and the group
velocity of baroclinic Rossby waves. In particular, this means that the EP flux is always
parallel to the group velocity; the EP flux tells us about how waves propagate.

Using (7.69), we may express the wave activity conservation relation as,

∂A
∂t

= −∇ · (cgA) +D. (7.70)

The above equation makes clear why we have referred to A as the wave activity. The flux
of A occurs via the group velocity for Rossby waves.

For a steady, propagating wave in adiabatic frictionless flow, we have that ∇ · (cgA) = 0,
implying that the EP flux is also zero, and that the wave does not affect the zonal-mean flow.
On the other hand, in a region that is a source of wave activity, we expect ∇ · (cgA) > 0,
implying an acceleration of the zonal-mean zonal wind by (7.36), and in a region of wave
dissipation (by friction for example) we expect ∇ · (cgA) < 0, implying a deceleration of
the mean flow.

7.3.4 Summary and application to the atmosphere

In this section we have demonstrated the fundamental nature of the EP flux and its con-
nection to midlatitude eddy dynamics. In particular, we have shown that,

1. The EP flux divergence represents the net effect of eddies on the mean zonal flow.

2. The EP flux divergence is equal to the meridional flux of QGPV.

3. The EP flux represents the flux of wave activity in the atmosphere, and it is parallel
to the group velocity for Rossby waves.
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Figure 7.3: Annual-mean Eliassen-Palm flux [(7.71); vectors] and the acceleration of the zonal-
mean flow by eddies [(7.72); coloours] calculated based on NCEP-DOE reanalysis for the years
2008-2017 (see footnote 5).

The above properties suggest that the EP flux is an ideal quantity for use in visualising
the effects of eddies on the mean flow in the atmosphere. Fig. 7.3 shows a visualisation of
the EP flux and its divergence for the southern hemisphere following Edmon et al. (1980)
and defined in spherical coordinates rather than the cartesian coordinates used here5. The
dominant pattern of ∇ · FEP is the strong divergence of the EP flux near the surface
at midlatitudes and to a lesser extent polar latitudes, with a broad region of EP flux
convergence aloft. The EP flux vectors themselves are almost vertical at low levels in the
midlatitudes, bending equatorward in the upper atmosphere.

Since the EP flux represents the flux of wave activity, we may also interpret the EP flux
vectors as the mean motion of Rossby wavepackets. The midlatitude lower troposphere is a
source of Rossby waves (associated with baroclinic instability); this source of wave activity

5The EP flux may be defined in spherical coordinates as

Fspherical
EP = −[u†v†] cosφ j + f cosφ

[v†θ†]

∂p[θ]
k, (7.71)

where j and k are the unit vectors in the meridional (latitude) and vertical (pressure) directions. The net
acceleration of the zonal-mean flow by eddies is then given by

1

cosφ
∇p · Fspherical

EP = − 1

Re cos2 φ

∂

∂φ

{
[u†v†] cos2 φ

}
+ f

∂

∂p

{
[v†θ†]

∂p[θ]

}
. (7.72)
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Figure 7.4: Effect of eddy mixing on the QGPV distribution. A fluid with an initially uniform PV
distribution (q0, black solid) undergoes some mixing, which locally reduces the QGPV gradient, but
produces an increase in the QGPV gradient both to the north and south (q1, grey). This change in
the mean state has the effect of promoting mixing in the region with low QGPV gradient and sup-
pressing it elsewhere. Further mixing therefore enhances the anistropy in the QGPV distribution,
producing a mixed region with close to zero QGPV gradient, and regions with very high QGOV
gradients on either side (qf , dashed).

is associated with an acceleration of the flow. The waves then propagate upwards, into
the upper troposphere, where some of them decay (decelerating the upper tropospheric
flow). Other waves continue propagating and are deflected meridionally (but primarily
equtoraward), where they eventually reach their critical latitude and decay, decelerating
the flow at subtropical and subpolar latitudes.

7.4 Jets in a baroclinic atmosphere

Let us now think a little more generally about jet formation in baroclinic atmospheres. We
have shown above that there is a fundamental connection between the meridional QGPV
flux and the EP flux divergence. In particular, we may rewrite the TEM form of the
zonal-mean momentum equation (7.36) using the QGPV flux,

∂[ug]

∂t
= [v∗q∗] + f0[ṽ] + [Fx]. (7.73)

The explicit eddy forcing is by the QGPV flux, while the effect of the mean meridional
circulation is through the residual meridional velocity [ṽ]. Since the residual overturning
balances the mean diabatic heating in the atmosphere, it is zero in adiabatic flow. Under
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adiabatic, frictionless flow, we therefore have that,

∂[ug]

∂t
= [v∗q∗], (7.74)

the zonal-mean acceleration is controlled by the eddy QGPV flux.

The utility of thinking about the flow from the perspective of QGPV fluxes is that the
QGPV is a conserved variable, and therefore its flux must be (on average) down gradient.
This provides a strong constraint on the QGPV gradient, which, as we have seen in the
previous chapter, need not apply to momentum. This provides us with a natural and
simple method for parameterising the effects of eddies on the mean flow by assuming that
the action of eddies is to diffuse QGPV down its zonal mean gradient. Such diffusion, if
it were to occur with a uniform diffusivity, would tend to smooth out QGPV gradients,
thereby smoothing the zonal wind distribution. How then, can we explain the formation
of jets in quasigeostrophic flows from the perspective of the QGPV?

Consider a flow that initially has a uniform gradient of QGPV. This could be a flow at rest;
the gradient of QGPV would then equal β the gradient of the Coriolis parameter. Suppose
an eddy forms in this flow and produces some irreversible mixing within some region.
Since QGPV is conserved, we would expect such mixing to result in a local reduction of
the QGPV gradient. Far away from the eddy, however, we would expect the QGPV to
be unchanged. As shown in Fig. 7.4, this requires the QGPV gradient to be increased in
the surrounding regions. The action of the irreversible mixing by the eddy has therefore
created alternate regions of increased and decreased QGPV gradient.

Now consider how this new mean state affects the propagation of eddies. A key quantity
for Rossby wave propagation is the Doppler-shifted phase speed,

[u]− c =
∂y[q]

κ
. (7.75)

Where [u]−c is large, wave propagation is supported, and mixing is suppressed, while where
[u]− c is small, wave breaking occurs, and mixing is enhanced. Since the Doppler-shifted
phase speed is proportional to the QGPV gradient, this implies that mixing is enhanced
in regions where the QGPV gradient is already low. This produced a feedback mechanism
that produces regions of strong mixing, and uniform QGPV, separated by jets, associated
with step changes in QGPV, that act as mixing barriers.

Jets may be produced by the action of QGPV diffusion with a diffusivity that is nonuniform
and depends on the flow. In fully developed QG turbulence, this can lead to multiple jets
separated by regions of enhanced mixing known as a “PV staircase” for the shape of its
QGPV profile as a function of meridional distance. What sets the separation distance of
these jets? The answer to this question is beyond the scope of these notes, but it depends
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Figure 7.5: Example of a PV staircase, with the PV increasing stepwise with latitude, and the
associated distribution of zonal wind exhibiting multiple jets. In certain parameter regimes, the
spacing of the PV stairs is related to the Rhines scale, but in other regimes, the size of the steps
may also be influenced by the role of friction in arresting the upscale energy cascade.

on the rotation rate, the size of the planet, and the role played by surface friction in the flow
(see e.g., Vallis, 2017, ch 9). A key length scale involved, is the Rhines scale, defined,

Lβ =

√
U

β
, (7.76)

where U is a characteristic velocity, and under certain conditions the Rhines scale sets the
jet spacing (Rhines, 1975). Note that this length scale depends on the variation of f with
latitude, and not its absolute value.
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Chapter 8

The Hadley cell redux: eddy
influences and the seasonal cycle

In the preceding chapters we have presented two contrasting views of the atmospheric
general circulation. In chapters 6 and 7 we have described how eddies drive the extratropical
overturning circulation through their transports of momentum and heat. On the other
hand, chapter 4 presented a theory for the tropical circulation based on axisymmetric
dynamics, where eddies are entirely neglected. How can we bridge these two views of
the factors that drive meridional overturning circulation? In this chapter we consider this
question, and we consider how to incorporate the influence of eddies on the Hadley Cell.
This discussion will lead us to consider how the Hadley Cell varies seasonally, and how the
role of eddies changes between the equinoctial circulation and the solsticial circulation that
is dominated by the monsoons.

8.1 A non-axisymmetric Hadley Cell

8.1.1 Angular-momentum balance of the subtropics

We begin by considering the angular-momentum budget of the Hadley Cell. In chapter
4, we limited ourselves to an axisymmetric atmosphere, in which angular momentum is
conserved in the absence of friction. This led us to the steady-state inviscid equation for
angular-momentum (4.1), which may be written in pressure coordinates as,

u · ∇pM = 0 (8.1)

where u = (u, v, ω) and M = Re cosφ(u + Re cosφ) is the angular momentum. This
equation states that angular momentum is conserved along streamlines.

123
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Under more general conditions, where we allow for zonal asymmetries, (8.1) is no longer
valid. Instead, we must consider the eddy fluxes of angular momentum as we did in chapter
5. For flows that are not axisymmetric, the corresponding steady-state equation governing
the zonal- and time-mean angular momentum may be written,

[u] · ∇[M ] = −∇p ·
(

[u†M †]
)
. (8.2)

Using the definition of the angular momentum, this may be rearranged to give

[v]

Re

∂[M ]

∂φ
+ [ω]

∂[M ]

∂p
= − 1

cosφ

∂[u†v†] cos2 φ

∂φ
−Re cosφ

∂[u†ω†]

∂p
. (8.3)

Noting that ∂φ[M ] = −R2
e cosφ(f+[ζ]), where ζ is the relative vorticity, we may write this

as

[v](f + [ζ]) + [ω]
∂[u]

∂p
= −S, (8.4)

where, as in chapter 5, we have denoted the eddy-momentum flux convergence by

S = − 1

Re cos2 φ

∂[u†v†] cos2 φ

∂φ
− ∂[u†ω†]

∂p
. (8.5)

The above equation was derived in chapter 5 as (5.17).

In chapter 5, we were focussed on the extratropical circulation, and we therefore were
justified in assuming that the flow was in the quasigeostrophic (QG) regime. In this regime,
vertical advection of angular momentum may be neglected, and the relative vorticity may
be assumed to be small in comparison to the planetary vorticity f . The equation above
therefore provides a direct relationship between the meridional flow [v] and the eddy fluxes
in the QG regime. In the present case, we are interested in the tropical circulation, and we
therefore cannot make the QG approximation. Nevertheless, we can still gain some insight
from the balance (8.4).

Consider evaluating (8.4) in the upper troposphere at the latitude of the Hadley Cell
streamfunction maximum φm (Fig. 8.1). At this latitude, streamlines of the flow are
quasi-horizontal1, and therefore we may neglect the term involving ω on the left-hand side.
Integrating with mass weighting from the level of the streamfunction maximum to the
tropopause, we may write,

(1− Ro)

∫ pm

pt

[v]
dp

g
= −

∫ pm

pt

S

f

dp

g
, (8.6)

1While the arrows in Fig. 8.1 are not horizontal at the latitude φm, our approximation is still justified
provided f [v] >> [ω]∂p[u].
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Figure 8.1: Annual-mean streamfunction [solid (anticlockwise) and dashed (clockwise) black lines;
contour interval 1× 109 kg s−1] and meridional overturning mass flux (arrows) estimated based on
the NCP-DOE reanalysis. Red line gives the integration path used to construct (8.8).

where we have defined the bulk Rossby number,

Ro = − 1

f

∫ pm
pt

[v][ζ] dpg∫ pm
pt

[v] dpg
. (8.7)

That is, the bulk Rossby number is defined as the negative of the ratio of the mass-
flux-weighted average relative vorticity to the planetary vorticity. Using the definition
of the streamfunction (2.63), we may relate the integral of [v] to the maximum in the
streamfunction Ψmax, so that we may write,

(1− Ro)Ψmax = −〈S〉
f
, (8.8)

where we have defined 〈S〉 = 2πRe cosφ
∫ pt
pt
S dp

g .

Equation (8.8) provides a relationship between the Hadley Cell strength (as measured
by its maximum mass flux) and a quantity proportional to the upper-tropospheric eddy-
momentum flux convergence at the latitude of the streamfunction maximum. This rela-
tionship is mediated by the non-dimensional number Ro, which we have identified as the
bulk Rossby number.

8.1.2 Linear and angular-momentum conserving limits

To understand (8.8) it is helpful to consider two limits. In the first limit, we assume the
relative vorticity is much smaller than the planetary vorticity in the subtropical atmosphere,



126 The Hadley cell redux: eddy influences and the seasonal cycle

Figure 8.2: Hadley Cell strength Ψmax plotted against a measure of the subtropical eddy mo-
mentum flux divergence T for idealised simulations with different planetary rotation rates Ωe and
planetary radii ae (colours). Simulations were conducted with an idealised dry GCM as detailed in
Walker and Schneider (2006). Figure adapted from Fig. 6b of Walker and Schneider (2006).

and as a result Ro<< 1. In this regime, the strength of the Hadley Cell is directly related to
the eddy momentum flux divergence in the upper tropsophere. Any change in the strength
of the Hadley Cell must therefore occur via a change in these eddies; the Hadley Cell does
not respond directly to thermal driving! The low bulk Rossby number limit is the limit in
which QG scaling is valid, and it is the relevant limit for the extratropics. As we showed
in chapter 5, the strength of the Ferrel cell is directly tied to the eddy driving.

The second limit to consider is one in which the eddy fluxes are small and angular mo-
mentum is quasi-conserved along streamlines. In this limit, regions of quasi-horizontal flow
must have that ∂φ[M ] ≈ 0. This implies that,

[ζ] ≈ −f, (8.9)

and the Rossby number Ro ≈ 1. In this regime, the left and right hand sides of (8.8) both
approach zero, and the equation tells us nothing about the strength of the Hadley Cell.
This is the relevant limit for the Held-Hou model of the Hadley Cell, and in this limit,
the circulation strength is directly controlled by energetic constraints; the Hadley Cell can
respond to thermal driving directly.
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8.1.3 What is the bulk Rossby number for the Hadley Cell?

The above discussion suggests that a key question for understanding the Hadley Cell on
Earth is the extent to which it may be described in one or the other of the above limits.
Walker and Schneider (2006) provided some hints at the answer to this question. The
authors conducted a suite of simulations of the equinoctial circulation with an idealised
dry general circulation model forced by Newtonian relaxation to an imposed “radiative
equilibrium” state. Starting from an Earth-like control simulation, the planetary rotation
rate, planetary radius, radiative equilibrium temperature profile, and convective lapse rate
were varied over a broad range. Fig. 8.2 summarises their results. It plots, for a number
of simulations with varying planetary rotation rates and planetary radii, the strength of
the simulated Hadley Cell Ψmax against a measure of the strength of the subtropical eddy
momentum flux divergence T = −〈S〉/f evaluated at the latitude of the Hadley Cell
streamfunction maximum. Almost all simulations lie close to the one-to-one line, indicating
that Ro<< 1. Those simulations that do not lie close to the one-to-one line have relatively
weak Hadley Cells. This implies that, over a broad range of parameters, the equinoctial
Hadley Cell remains close to the linear, low Rossby number regime where eddy-momentum
fluxes play a role in determining the Hadley Cell strength.

Walker and Schneider (2006) further showed that the response of the Hadley Cell strength
to changes in planetary parameters did not agree with the theoretical predictions based on
the Held-Hou model. Instead, the Hadley Cell in their simulations behaved in a manner
consistent with the notion that the Hadley Cell strength is controlled by extratropical
processes, and in particular by eddies propagating from the midlatitudes and breaking in
the subtropics thereby producing a flux of angular momentum from the subtropics to the
midlatitudes.

Consistent with the idealised discussed above, observational estimates suggest that, in the
annual mean, the ratio [ζ]/f . 0.4 in the subtropical upper tropsophere, implying that
Earth’s Hadley Cell is relatively close to the linear regime (Fig. 8.3). Indeed, for the annual
mean, contours of angular momentum, which for a resting fluid are vertical, are only mod-
erately perturbed by the circulation, and streamlines cross angular-momentum contours
regularly in the descending branch. Recall that in the Held-Hou model, streamlines are
exactly parallel to angular momentum contours; the observed annual-mean Hadley Cell is
rather far from this limit!

The above results suggest a strong influence of extratropical processes on the Hadley cell for
annual-mean or equinoctial conditions. However, as shown in chapter 1, Earth’s tropical
circulation undergoes a large seasonal shift from an equinoctial regime, with two Hadley
Cells of roughly equal strength, to a solsticial regime, in which strong monsoon circulations
contribute to a dominant winter cell. For this solsticial circulation, the ratio [ζ]/f reaches
∼ 0.8 in regions of the Hadley Cell’s upper branch, indicating a higher bulk Rossby number,
and implying that the circulation is closer to the nonlinear, angular-momentum conserving
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Figure 8.3: Streamfunction [thin black solid (anticlockwise) and dashed (clockwise) lines; contour
interval 2× 109 kg s−1], angular-momentum contours (contoured for values of angular momentum
equal to that of the Earth at latitudes of 0◦,±4◦,±8◦, ...), and ratio −[ζ]/f (colours; latitudes
equatorward of 5◦ masked out) according to the NCEP-DOE relanalysis for (a) the annual mean
and (b) July. Thick black line gives the zero contour of the zonal- and time-mean zonal wind.

regime. Understanding the reasons for this seasonal variation in the character of the Hadley
Cell, and the implications for the tropical general circulation, are the subject of the next
section.

8.2 Monsoons and the solsticial Hadley Cell

8.2.1 Geometrical constraints on the Hadley Cell

To understand some of the differences between the equinoctial and solsticial Hadley Cells,
it is useful to consider the geometry of angular momentum contours. Recall that, under
our shallow fluid approximation, the planetary angular momentum is given by,

Mp = R2
e cos2(φ). (8.10)

Near to the equator, we may approximate this as,

Mp ≈ R2
e(1− φ2), (8.11)
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Figure 8.4: Contours of angular momentum and the streamfunction for idealised Hadley Circula-
tions of different “shapes”. (a) resting atmosphere, (b) angular-momentum conserving equinoctial
Hadley Cell in the nonlinear Ro ≈ 1 regime (c) angular-momentum conserving solsticial Hadley
Cell, and (d) eddy-influenced equinoctial Hadley Cell in the linear Ro << 1 regime. Yellow shading
represents boundary layers associated with the Earth’s surface or with a discontinuity in the zonal
wind.

indicating that the planetary angular momentum decreases roughly quadratically away
from its maximum at the equator. Contours of angular momentum for a resting atmo-
sphere are therefore vertical; Fig. 8.4a shows such contours at values of angular momen-
tum corresponding to the planetary angular momentum at intervals of four degrees of
latitude.

Now let us consider how these contours are perturbed by an equinoctial Hadley Cell.
The observed equinoctial circulation includes a subtropical jet, which implies a poleward
displacement of the M contours. However, observational estimates indicate that this dis-
placement is relatively weak, and streamlines of the Hadley Cell cross angular momentum
contours throughout the descending branch, as depicted in Fig. 8.4b. This is characteristic
of a Hadley Cell in the linear regime.

In contrast, if we consider an angular-momentum conserving Hadley Cell, streamlines can-
not cross angular momentum contours, except within boundary layers. As pointed out in
section 4.2.2, this requires the descending branch of the Hadley Cell to be sloped so that
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air following a streamline reaches the surface near the equator. As shown in Fig. 8.4d,
this produces an angular momentum distribution with no contours in the region of the
Hadley Cell, and a sharp discontinuity in angular momentum at its sloping edge [see Fang
and Tung (1996) for detailed solutions of this “sloping” Hadley Cell]. For the equinoctial
case, conservation of angular momentum along streamlines implies a distribution of angular
momentum that is homogenised throughout the Cell.

Now let us consider the cross-equatorial cell in the solsticial case. Air rises from the sur-
face at a latitude φI in the summer hemisphere with angular momentum MI = Mp(φI),
reaching the tropopause and flowing across the equator and descending on the winter
side. Assuming angular-momentum is conserved, the angular momentum contour MI also
follows this trajectory. For the cross equatorial cell, this contour may intersect the sur-
face at latitude −φI , at which point the implied zonal wind is zero, while the associated
streamline may be closed within the boundary layer (Fig 8.4d). Streamlines may be par-
allel to angular-momentum contours in the free troposphere without requiring either a
homogenised angular-momentum distribution or an exotic Hadley Cell geometry.

The above considerations of how to close streamlines while ensuring they do not cross
angular momentum contours outside of the boundary layer provides a hint as to why we
might expect the solsticial, cross-equatorial cell to be more likely to reside close to the
angular-momentum conserving regime. We now consider the solsticial cell more quanti-
tiatively by generalising the Held and Hou (1980) model to the case in which the forcing
maximises off the equator.

8.2.2 Extending Held & Hou to the solstice: the Lindzen & Hou model

The angular-momentum conserving axisymmetric solution of Held and Hou (1980) was
extended to the off-equatorial case by Lindzen and Hou (1988). As in chapter 4, the model
was originally phrased in terms of a Boussinesq fluid, but we will assume an atmosphere in
convective quasi-equilibrium here. We generalise the RCE distribution of boundary-layer
entropy (3.37) to the case in which the maximum occurs at a latitude φ0,

sRCE
b = sRCE

b0 − δsRCE
b (sinφ− sinφ0)2. (8.12)

Note that this distribution of entropy has a non-zero gradient at the equator and therefore
automatically violates Hide’s theorem.

Like the Held-Hou model, the Lindzen and Hou (1988) model assumes that air rises in the
ITCZ to the upper troposphere, carrying with it the angular momentum of the surface,
and then flows both north and south conserving its angular momentum. Denoting the
ITCZ latitude φI (which in general will differ from the forcing maximum φ0), this implies
that the upper-tropospheric zonal velocity within the region of the Hadley Cells is given
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Figure 8.5: Boundary layer entropy (top) and zonal wind (bottom) for the Lindzen and Hou
(1988) model of the Hadley Cell under (a,c) equinoctial conditons [φ0 = 0◦; equivalent to Held
and Hou (1980)] and (b,d) solsticial conditions (φ0 = 6◦). Black line shows angular-momentum
conserving solution, valid between the latitudes φS and φN , and gray line shows RCE solution, valid
outside this region. Solutions are plotted using solid lines in regions where they are valid and using
dotted lines otherwise. In top panels, colours show regions of radiative-convective heating (red) and
cooling (blue), and in bottom panels colours show westerly (red) and easterly (blue) zonal winds.
In right panels, φI marks the latitude of the boundary between the summer and winter Hadley
Cells, corresponding to the maximum in boundary-layer entropy and the zero zonal wind line.

by,

uAMC
t = ΩRe

(cos2 φI − cos2 φ)

cosφ
. (8.13)

Assuming that the surface winds are weak, we may use the thermal wind relation (3.35)
to derive an expression for the boundary layer entropy given by,

sAMC
b = sb0 −

Ω2R2
e

2(Tb − Tt)
(cos2 φI − cos2(φ))2

cos2 φ
. (8.14)

The unknowns sb0 and φI are then constrained by assuming that sAMC
b = sRCE

b at the
northern and southern boundaries φN and φS , and by assuming each cell is energetically
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closed, so that, ∫ φI

φS

(sAMC
b − sRCE

b ) cosφdφ = 0,∫ φN

φI

(sAMC
b − sRCE

b ) cosφdφ = 0.

An example of such a solution is shown in Fig. 8.5 for φ0 = 6◦ along with the original
Held-Hou solution recovered by setting φ0 = 0 (holding all other parameters the same).
Some of the main features of the solution are,

• The requirement of angular-momentum conservation in the upper branch implies that
both the zonal wind and boundary-layer entropy are symmetric about the equator
within the region of the Hadley Cells. This implies a maximum in sb within the
winter hemisphere. Such a secondary maximum is not observed in the zonal mean
solsticial temperature or boundary-layer entropy distributions, indicating that the
flow is somewhat outside the fully nonlinear regime, despite the higher bulk Rossby
number.

• The latitude of the ITCZ, φI , corresponding to the maximum in boundary-layer
entropy is substantially poleward of the forcing maximum φ0.

• Equatorward of φI , the tropopause level winds are easterly; in the φ0 case, the
tropopause level winds are everywhere westerly.

• The implied transport of heat by the cross equatorial cell is much larger than the
equinoctial cells, as indicated by the size of the coloured regions in Fig. 8.5. Assuming
the gross moist stability of the cells are the same, this implies that the cross-equatorial
cell is much stronger than the equinoctial cells. This strengthening occurs nonlinearly,
and requires only a shift of φ0 only a few degrees from the equator.

Some of the above features of the Lindzen & Hou model appear to be relevant to Earth’s
solsticial circulation. For example, we have seen that the solsticial cross-equatorial Hadley
Cell is much stronger than its equinoctial counterparts, consistent with the behaviour
above. Furthermore, the easterly wind shear associated with temperatures that increase
poleward may be seen in Earth’s solsticial circulation as well as in Fig. 8.5. This latter
feature may be of particularly importance for governing the seasonal cycle of the tropical
overturning circulation for reasons we discuss below.

8.2.3 Eddy-mean flow interactions and monsoons

In the previous sections we have argued that Earth’s Hadley Cell varies in its proximity
to the nonlinear angular momentum conserving regime depending on the time of year. In
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the equinoctial regime, the bulk Rossby number is relatively small, and eddies are thought
to play a substantial role in influencing the strength of the Hadley Cell (Fig. 8.3). The
cross-equatorial solsticial Hadley Cell, on the other hand, achieves higher values of the
bulk Rossby number, and it has been argued to have some similarities with the angular-
momentum conserving model of Lindzen and Hou (1988) [although it should be noted that
evidence for an influence from midlatitude eddies has been found in the solsticial case as
well (Caballero, 2007, 2008)]. In this section we briefly discuss some reasons why we might
expect the Solsticial Cell to be closer to the nonlinear regime, and some of the implications
of this regime transition for the tropical seasonal cycle.

To begin, we note that, the model of Lindzen and Hou (1988) produces easterly zonal winds
equatorward of the cross-equatorial cell’s rising branch at φI and westerly winds elsewhere
(Fig. 8.5). This means that, for the equinoctial case, the winds are westerly everywhere,
but when the rising branch is displaced sufficiently far from the equator, the equatorial
region contains upper tropospheric easterlies. Also recall that Rossby waves can only
propagate meridionally in regions in which the zonal phase speed c satisfies [u] − c > 0.
Finally, note that the energy of disturbances in the atmosphere is dominated by phase
speeds c > 0 (e.g., Fig. 6.6). As a result, Rossby wave propagation is prevented in regions
of easterly winds, and this limits the influence of midlatitude eddies on the solsticial Hadley
Cell.

The above argument was made based on the zonal wind distribution produced by the
Lindzen and Hou (1988) model, but it may also be seen in estimates of the observed wind
distribution (Fig. 8.3). For the annual mean, the upper-tropospheric zonal winds are west-
erly poleward of about 10◦ either side of the equator, leaving the centre of the equinoctial
cells able to be penetrated by Rossby waves. During the solstice, however, the centre of
the cross-equatorial cell is shielded from midlatitude eddies by easterly winds throughout
the troposphere, thus explaining the cell’s proximity to the nonlinear regime.

The transition of the tropical circulation from the equinoctial, eddy-influenced regime to a
solsticial, angular-momentum conserving regime has been argued to be relevant to the rapid
onset of monsoons on Earth. In particular, Bordoni and Schneider (2008) argued that the
shielding of the Hadley Cell rising branch from midlatitude eddies by equatorial easterlies
immediately before monsoon onset allows for the subsequent transition of the cell to the
nonlinear regime (see also Schneider and O’Gorman, 2008). Once in this regime, the Hadley
Cell strengthens rapidly as the maximum in forcing shifts further from the equator as was
found in the Lindzen and Hou (1988) model. The eddy-mean flow and nonlinear feedbacks
associated with this process allow for a rapid amplification of the cross-equatorial cell that
in some respects resembles the onset of the Asian monsoon in the Boreal summer.

The above argument implies that an important aspect of monsoon onset may be produced
simply by feedbacks associated with the zonal-mean flow and eddies. Bordoni and Schneider
(2008) argues that this implies that land-sea contrasts are unnecessary for the development
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of monsoons, rather, the important aspect is the existence of a surface with low thermal
inertia. This is part of a greater body of work which has sought to replace the soewhat dated
view of monsoons as large-scale sea breezes with the more modern view of the monsoon as
the regional manifestation of the cross-equatorial solsticial Hadley Cell (e.g., Gadgil, 2018).
This view highlights the constraints placed on monsoons through the angular-momentum
budget, and the connection of monsoons to moist convection, over the simplified view of
the monsoon as a response to temperature differences between land and ocean.
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