The general circulation of the atmosphere

Why are there jets in the atmosphere?

Why are planetary fluid envelopes dominated by jets?

1. Turbulence in strongly stratified, rotating fluids is quasi-two-dimensional

2. Two-dimensional turbulence has an inverse energy cascade

General information

- Lecturer
 - Martin Singh [Rm 213, 9 Rainforest Walk]
- Class times [G60, Ground floor, 9 Rainforest Walk]
 - Fri 10am-12pm
 - Fri 2pm-4pm
- 3 hours of "lectures" plus 1 hour problem solving
- Course website
 - singh.sci.monash.edu/GenCirc

Course aims

- Characterise the large-scale circulations within Earth's atmosphere and their associated transports of momentum, energy and water
- Develop a theoretical framework and a set of mathematical tools to analyse and understand the physical and dynamical processes that maintain the large-scale circulation
- Engage with the scientific literature underpinning our understanding of the general circulation and how it may change in response to changes in climate

Structure of the course

- 1. Overview and tools (ch 1 & section 2.1)
 - 1. Overview & historical account of the general circulation
 - 2. Governing equations
- 2. Radiative-convective equilibrium & Hide's theorem (ch 3)
 - 1. Radiative-convective equilibrium
 - 2. Hide's theorem
- 3. Axisymmetric and non-axisymmetric circulations (ch 4 & section 2.2-2.3)
 - 1. Axisymmetric theories of the Hadley circulation
 - 2. Reynolds decomposition into mean and eddy
- 4. The angular momentum budget of the atmosphere (ch 5)
 - 1. Angular momentum budget of the atmosphere
 - 2. Surface winds and the angular momentum budget
- 5. Jet formation & maintenance: the barotropic case (ch 6)
 - 1. Maintenance of a barotropic jet
 - 2. Rossby waves and momentum transports
- 6. Forcing of the zonal-mean circulation (ch 7)
 - 1. The transformed Eulerian mean
 - 2. Eliassen-Palm fluxes
- 7. Non axisymmetric tropical circulations (ch 8)
 - 1. Eddies and the Hadley Cell
 - 2. The seasonal cycle and monsoons

References

- Course notes available at: http://singh.sci.monash.edu/GenCirc/notes/GenCirc notes.pdf
- I borrow heavily form the following sources
 - Held, I. M., The general circulation of the atmosphere, *Proc. Geophysical Fluid Dynamics Program*, **2000**, 1-54. Available: https://www.whoi.edu/fileserver.do?id=21464&pt=10&p=17332
 - Vallis, G. K., Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation, *Cambridge University Press*, **2006**, 745p.
 - Peixoto, J. P. & Oort, A. H., Physics of Climate, J. Climate, AIP Press, 1992, 520p.
 - Stone, P., General circulation of the atmosphere lectures, course 12.812, Mass. Inst. Tech., **2005**. Available: https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-812-general-circulation-of-the-earths-atmosphere-fall-2005/
- I will provide additional references throughout the course

Assessment

- Honours/masters/VIEPS students:
 - 2 Assignments (15% each)
 - Report & oral presentation on a peer-reviewed paper (20%)
 - Written exam (50%)
- PhD students (Monash Doctoral Program)
 - 2 Assignments
 - Report & oral presentation on a peer-reviewed paper
- For those auditing the class
 - Present a paper to the class in the final week

Paper report

 Pick a paper from the list on the web (or of your own choosing) and write a summary

• 1500 word report

• 10-minute oral presentation to the class

The general circulation of the atmosphere

Section I: Overview & tools

History and overview of the general circulation

Learning objectives

After this class you will be able to:

- 1. Define what is meant by the term "general circulation"
- 2. Recall historical models of the general circulation including those by Hadley and Ferrel/Thompson
- 3. Describe the basic thermal structure of the atmosphere and its seasonal variations
- Describe the basic dynamic structure of the atmosphere and its seasonal variations

What is the general circulation?

What is the general circulation?

"In its broadest sense, the complete statistical description of large scale atmospheric motions"

-- AMS Glossary

What is the general circulation?

"In its broadest sense, the complete statistical description of large scale atmospheric motions"

-- AMS Glossary

Introduction to the general circulation

- A historical perspective
- The observed general circulation
 - Thermal structure of the atmosphere
 - Mean circulation
 - Eddies
 - Precipitation and the hydrological cycle

The general circulation: a historical perspective

"During the past three centuries, the prevailing ideas about the general circulation of the earth's atmosphere have evolved in a stepwise manner. Early in each step, a new theoretical idea is formulated. Late in each step, the idea gains general acceptance, but, more or less concurrently, new observations show that the idea is wrong."

- Lorenz (1983), Bull. Amer. Met. Soc., 64, 730-734.

Hadley (1735): Single cell

- Coriolis force on meridional motions induces surface easterlies and westerlies
- Angular-momentum balance between the surface and atmosphere

Lorenz (1983), Bull. Amer. Met. Soc., 64, 730-734.

Hadley (1735): Single cell

- Coriolis force on meridional motions induces surface easterlies and westerlies
- Angular-momentum balance between the surface and atmosphere
- But at midlatitudes mean surface winds have poleward component!

Lorenz (1983), Bull. Amer. Met. Soc., 64, 730-734.

Thompson (1857) & Ferrel (1859): A second cell

- Coriolis force on zonal motions
- Maximum in pressure at boundary between surface easterlies & westerlies
- Shallow, thermally indirect cell at midlatitudes
- But upper level winds at midlatitudes drift equatorwards!

Lorenz (1983), Bull. Amer. Met. Soc., 64, 730-734.

Bigelow (1902), Defant (1921) & Jefferys (1926): The importance of eddies

Fig. 9.—Curling of the northward and southward streams about the centers of high and low areas.

- Bigelow (1902) pointed out that heat transport could be effected by zonally asymmetric motions
- Jefferys (1926) applied these ideas to angularmomentum transports

• Key conceptual advance:

The zonal-mean circulation may not be a solution to the zonallysymmetric equations of motion.

Source of the eddies: Baroclinic instability

 Bjerknes (1919): "the kinetic energy [of the cyclones, is] furnished by the potential energy of the system of warm and cold air lying beside each other."

- Charney (1947) & Eady (1949): Theory of baroclinic instability
- Theory of available potential energy (Lorenz, 1955)

The annual-mean meridional overturning circulation

(Countour interval 0.5 x 10⁹ kg s⁻¹, based on NCEP-DOE for 1981-2010)

"Perhaps near the end of the 20th century we shall suddenly discover that we are beginning the fifth step."

- Lorenz (1983), *Bull. Amer. Met. Soc.*, **64**, 730-734.

The observed general circulation

Solar insolation forcing

Question

• At what time of year is the maximum globally-averaged solar insolation?

Question

• At what time of year is the maximum globally-averaged solar insolation?

4th of Jan

Perihelion occurs in Austral summer

- At the current time in Earth's history, Earth's closest approach occurs in our summer.
- In the mid-Holocene (6ka) Perihelion occurred in the Boreal summer
- This is thought to account for the "Green Sahara"

Question

• Where is the maximum daily-mean solar insolation at the solstice?

Question

• Where is the maximum daily-mean solar insolation at the solstice?

The pole!

Daily-mean Solar insolation maximises at the poles!

Atmospheric circulation is driven by uneven distribution of solar radiation incident on the Earth's surface

"Top of atmosphere" insolation

Thermal structure of the atmosphere

Maximum zonal-mean temperature stays near the equator

Mean surface air temperature

Seasonal range of surface air temperature

What determines the strength of the seasonal cycle of temperature?

Zonal-mean temperature (K)

Zonal-mean potential temperature (K)

Zonal-mean equivalent potential temperature (K)

Zonal-mean saturation equivalent potential temperature (K)

Why is the tropical atmosphere close to constant saturation equivalent potential temperature?

NCEP-DOE reanalysis 1981-2010

The mean circulation

Zonal-mean zonal wind (colours) and zonal-mean temperature (contours)

Upper-level winds

NCEP/NCAR Reanalysis

(NCEP Renalysis 1981 – 2010)

Zonal-mean surface winds

 Upper-level winds consistent with thermal wind balance

$$f\frac{\partial u}{\partial p} = -\frac{R}{p}\frac{\partial T}{\partial y}$$

- But this does not determine surface winds
- What drives the surface wind pattern?

Mean surface winds

(NCEP Renalysis 1981 – 2010)

Instantaneous upper-tropospheric winds

Why are the jets so sharp?

Jets in the ocean

Jets on other planets

The meridional overturning circulation

What sets the strength of the Hadley cell?

What sets the width of the Hadley cell?

(Countour interval 0.5 x 10⁹ kg s⁻¹, based on NCEP-DOE for 1981-2010)

Seasonal overturning circulation

Seasonal overturning dominated by the winter Hadley Cell

Meridional overturning streamfunction

(Countour interval 2 x 10^9 kg s⁻¹, based on NCEP-DOE for 1981-2010)

Why do the Ferrel cells exist?

- What drives a thermally indirect circulation?
- Why are there three cells in each hemisphere and not 1? or 5? or 23? What does this depend on?

Eddies

- Eddies are defined as deviations from the time and zonal mean
- We will categorise them into transient and stationary eddies

Kinetic energy per unit mass (m² s⁻²)

The hydrological cycle

Annual-mean precipitation

(CMAP merged precipitation 1981-2010)

Seasonal cycle of precipitation

Source: NASA

Questions

- Why is the tropical atmosphere close to constant saturation equivalent potential temperature?
- What drives the pattern of mean surface winds?
- Why are atmospheric jets so sharp?
- What sets the strength and width of the Hadley cell?
- What determines the strength and position of the monsoon?
- Why do the Ferrel cell exist? Why does Earth have three cells?
- What sets the relative humidity of the atmosphere?

How will the atmospheric general circulation change under global warming?